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Influenza-like illness (ILI) places a heavy social and economic burden on our society. Traditionally, ILI surveil-

lance data are updated weekly and provided at a spatially coarse resolution. Producing timely and reliable

high-resolution spatiotemporal forecasts for ILI is crucial for local preparedness and optimal interventions.

We present Theory-guided Deep Learning-based Epidemic Forecasting with Synthetic Information (TDEFSI),1

an epidemic forecasting framework that integrates the strengths of deep neural networks and high-resolution

simulations of epidemic processes over networks. TDEFSI yields accurate high-resolution spatiotemporal

forecasts using low-resolution time-series data.

During the training phase, TDEFSI uses high-resolution simulations of epidemics that explicitly model

spatial and social heterogeneity inherent in urban regions as one component of training data. We train a

two-branch recurrent neural network model to take both within-season and between-season low-resolution

observations as features and output high-resolution detailed forecasts. The resulting forecasts are not just

driven by observed data but also capture the intricate social, demographic, and geographic attributes of spe-

cific urban regions and mathematical theories of disease propagation over networks.

We focus on forecasting the incidence of ILI and evaluate TDEFSI’s performance using synthetic and real-

world testing datasets at the state and county levels in the USA. The results show that, at the state level, our

method achieves comparable/better performance than several state-of-the-art methods. At the county level,

TDEFSI outperforms the other methods. The proposed method can be applied to other infectious diseases as

well.

CCS Concepts: • Computing methodologies → Causal reasoning and diagnostics; Spatial and physical rea-

soning; Reasoning about belief and knowledge;

Additional Key Words and Phrases: Epidemic forecasting, deep neural network, LSTM, causal model, syn-

thetic information, physical consistency
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1 INTRODUCTION

Influenza-like illness (ILI) poses a serious threat to global public health. Worldwide, annually, sea-
sonal influenza causes three to five million cases of severe illness and 290,000 to 650,000 deaths [90].
Since 2010 in the USA, seasonal influenza has resulted in 10–50 million cases annually, 140,000
to 960,000 hospitalizations, and between 12,000 and 79,000 deaths and is responsible for approxi-
mately $87.1 billion in economic losses [19, 62]. Producing timely, well-informed, and reliable fore-
casts for ILI of an ongoing flu epidemic is crucial for preparedness and optimal intervention [27].
Traditionally, ILI surveillance data from the Centers for Disease Control and Prevention (CDC)
has been used as reference data to predict future ILI incidence. The surveillance data are updated
weekly but often delayed by 1 to 4 weeks and is provided at a HHS region (i.e., the 10 regions
defined by the United States Department of Health & Human Services) level and recently at the
state level. Considering the heterogeneity between different subregions, accurate predictions with
a finer resolution, e.g., at county or city level in the USA, are crucial for local public health decision
making, optimal mitigation resource allocation among subregions, and household or individual-
level preventive actions informed by neighboring prevalence [100]. Given spatially coarse-grained
surveillance data, it is challenging to forecast at a finer spatial level.

In this article, we use flat-resolution forecasting to denote the prediction of ILI incidence with the
same resolution as the surveillance data and high-resolution forecasting to denote the prediction
with a higher geographical resolution than provided in surveillance data. We focus on state-level
ILI surveillance and state (flat-resolution) or county-level (high-resolution) ILI forecasts. We use
the term deep neural networks (DNN) to denote multi-layer neural networks with multiple inputs
and outputs.

1.1 Our Contributions

We propose a novel epidemic forecasting framework, called Theory-guided Deep Learning-based
Epidemic Forecasting with Synthetic Information (TDEFSI).

Overall approach. TDEFSI produces accurate weekly high-resolution ILI forecasts from flat-
resolution observations. This is achieved by using a two-branch neural network model for ILI fore-
casting. It combines within-season observations (observed data points of the previous weeks that
characterize the ongoing epidemic) and between-season historical observations (observed data
points from similar weeks of the past seasons that characterize general trends around the current
week). It can generate probabilisitic forecasts by using Monte Carlo Dropout technique [35].

A key contribution of the article is to use theory generated synthetic data to train the neural
network. This is necessitated by the fact that disease surveillance data are sparse. Furthermore,
the data are noisy and incomplete. We overcome the limitations by training TDEFSI using data
generated by high-performance computing-based simulations of well accepted causal processes
that capture epidemic dynamics. These simulations are based on decades of work and have been
extensively validated. The simulations allow us to (i) use a realistic representation of the under-
lying social contact network that captures the multi-scale spatial, temporal, and social interac-
tions, as well as the inherent heterogeneity of social networks (individual demographic attributes,
heavy tailed nature of social contacts, etc.), leading to forecasts that are context specific and capture

the unique properties of a given urban region; (ii) produce multi-resolution forecasts even though
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observational data might only be available at an aggregate level, leading to an ability to forecast

disease incidence at a county or a city level as well as forecasts for desired demographic groups; and
(iii) capture the underlying causal processes and mathematical theories leading to explainable and

generalizable AI—the combination of theory and data-driven machine learning is an important and
emerging approach to scientific problems that are data sparse.

Key findings. Extensive experiments were carried out using both real-world as well as syn-
thetic datasets for testing. (i) In experiments on synthetic testing data, we evaluate TDEFSI perfor-
mance with different hyperparameter settings and find that the best look-back window size is 52
weeks, the same as the period of influenza seasons, for both state-level and county-level forcasting.
(ii) In experiments on two states of the USA using their real ILI incidence data as ground truth,
we compare TDEFSI and its variants with several state-of-the-art forecasting methods, among
which four methods can only make state-level predictions directly and one method can make both
state-level and county-level predictions directly. The results indicate that in most cases TDEFSI
methods achieves comparable/better performance than the comparison methods at the state level.
For high-resolution forecasting at the county level, TDEFSI significantly outperforms the compar-
ison methods. Between the variants of TDEFSI, we find that the between-season branch of our
neural network model improves the forecasting accuracy. (iii) We also find that the two physical
constraints in our TDEFSI model, which address spatial consistency and non-negative consistency
respectively, contribute to the improvement on the forecasting performance. (iv) Through a com-
parison between TDEFSI models trained with datasets generated by no-intervention simulations
and those by intervention-aware simulations, we find that in our TDEFSI framework realistic set-
tings in the causal model behind the neural network do improve the generalizability of the trained
forecasting model. (v) In general, TDEFSI is able to capture the heterogeneity in epidemic dynamics
among counties in a state and the spatial spread of the disease across the counties.

To the best of our knowledge, TDEFSI is the first to use a realistic causal high-resolution model
to train a deep neural network for epidemic forecasting. The basic approach is general and points
to the potential utility of the approach to study other problems in social and ecological sciences.
Unlike physical systems, encoding system-level constraints is often possible only via simulations;
the theories are largely local rules of interactions. In this sense, training the neural network us-
ing simulations provides a natural way to place constraints on the concept class that the neural
network effectively learns.

A natural question that arises is as follows: Why does one need to use a neural network when

simulations are available? There are multiple reasons to do this: (i) computational efficiency (abil-
ity to rapidly produce forecasts, (ii) generalizability (often simulation parameters might end up
overfitting to the data), and (iii) ability to incorporate additional data sources. In this sense,
DL+simulations appears to be a promising approach for forecasting rather than using either of
them individually. See the next section for further discussion.

2 RELATED WORK

2.1 Epidemic Forecasting

Forecasting the spatial and temporal evolution of infectious disease epidemics has been an area of
active research over the past couple of decades [11, 12, 37, 56, 57, 61, 66, 67, 71, 73, 76, 77, 83, 84]. We
briefly review related work in epidemic forecasting and deep learning pertinent to our problem;
see References [3, 23, 68] for more details. We discuss four ILI forecasting methods: causal methods,
statistical methods, artificial neural network methods, and hybrid methods. See Figure 1 for a brief
summary.

Causal methods. In epidemiology, within-host progression models for ILI include the fol-
lowing: susceptible-infectious-recovered (SIR), susceptible-exposed-infectious-recovered (SEIR),
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Fig. 1. Brief summary of existing ILI forecasting methods and data augmentation techniques.
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susceptible-infectious-recovered-susceptible (SIRS), and their extensions [4, 52]. Forecasting meth-
ods employing these models are called causal methods (or mechanistic methods), because they are
based on the causal mechanisms of infectious diseases. In these methods the underlying epidemic
model can be either a compartmental model (CM) [33, 55, 58] or an agent-based model (ABM)
[22, 70]. In a compartmental model, a population is divided into compartments (e.g., S, E, I, R). A
differential equation system characterizes the change of the sizes of each compartment due to dis-
ease propagation and progression. To get county-level epidemics in a compartmental model, one
needs to create compartments in each county, where county population sizes and between county
travel data become crucial. In an agent-based model, disease spreads among heterogeneous agents
through an unstructured network. Dynamics with individual behavior change exhibit significant
impact on epidemic and dynamic forecast models [29], which can be implemented using a high-
performance computing model [14]. The individual-level details in an agent-based model can be
easily aggregated to obtain epidemic data of any resolution, e.g., number of newly infected people
in a county in a specific week. Many forecasting methods have been developed based on either CM
or ABM [42, 63, 67, 76, 79, 98, 99, 102]. Shaman et al. [76] developed a framework for initializing
real-time forecasts of seasonal influenza outbreaks, using a data assimilation technique commonly
applied in numerical weather prediction. Tuite et al. [79] used an SIR CM to estimate parameters
and morbidity in pandemic H1N1. Yang et al. [98] applied various filter methods to model and
forecast influenza activity using an SIRS CM. In Reference [67], the authors proposed a simula-
tion optimization approach based on the SEIR ABM for epidemic forecasting. Hua et al. [42] and
Zhao et al. [102] infer the parameters of the SEIR ABM from social media data for ILI forecasting.
Limitations: Causal methods are generally computationally expensive as they require the parameter

estimation over a high-dimensional space. As a result the use of such methods for real-time forecasting

is challenging.

Statistical methods. Statistical methods employ statistical and time-series-based methodolo-
gies to learn patterns in historical epidemic data and leverage those patterns for forecasting [16,
44]. Popular statistical methods for ILI forecasting include, e.g., generalized linear models (GLM),
autoregressive integrated moving average (ARIMA), and generalized autoregressive moving av-
erage (GARMA) [5, 9, 28]. Wang et al. [89] proposed a dynamic Poisson autoregressive model
with exogenous input variables (DPARX) for flu forecasting. Yang et al. [97] proposed ARGO, an
autoregressive-based influenza tracking model for nowcasting incorporating CDC ILI data and
Google search data. The extensive work based on ARGO is discussed in Reference [96]. Limi-

tations: Statistical methods are fast. But they crucially depend on the availability of training data

and as such can only produce flat-resolution forecasts. High-resolution forecasts must be calculated

by multiplying the flat-resolution forecasts with high-resolution population proportions. The trained

models could not capture the heterogeneous dynamics between high-resolution regions. Furthermore,

since they are purely data driven, they do not capture the underlying causal mechanisms. As a result

epidemic dynamics affected by behavioral adaptations are usually hard to capture.

Artificial neural network methods. Artificial neural networks (ANN) have gained increased
prominence in epidemic forecasting due to their self-learning ability without prior knowledge.
Xu et al. [95] first introduced feed-forward neural network (FNN) into surveillance of infectious
diseases and investigated its predictive utility using CDC ILI data, Google search data, and me-
teorological data. Recurrent neural network (RNN) has been demonstrated to be able to capture
dynamic temporal behavior of a time sequence. In Reference [85] Volkova et al. built an LSTM
model for short-term ILI forecasting using CDC ILI and Twitter data. Venna et al. [82] proposed an
LSTM-based method that integrates the impacts of climatic factors and geographical proximity to
achieve better forecasting performance. Wu et al. [93] constructed a deep learning structure com-
bining RNN and convolutional neural network to fuse information from different sources. Deng
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et al. [25] recently designed a cross-location attention-based graph neural network for learning
time-series embeddings and location aware attentions. Limitations: Just like statistical methods,

ANN-based forecasting methods are data driven and have similar limitations. In addition, the model

performance usually depends on the availability of a very large training dataset. Another well-known

limitation of ANN methods is their ability to explain the resulting forecasts.

Hybrid methods. Hybrid methods combine data-driven and causal methods. They are attrac-
tive as they can borrow the best from both worlds [45]. The authors in Reference [69] proposed a
dynamic Bayesian model for influenza forecasting that combines the machine learning approach
and a compartmental model to explicitly account for systematic deviations between mechanistic
models and the observed data. Such methods have shown promise as evidenced in recent papers
on the study of physical and biological systems [31, 32, 40, 46–49, 91, 94]—see Reference [46] for
a discussion on this subject.

TDEFSI method. Our method combines the deep neural networks and high-resolution epi-
demic simulations to enable accurate weekly high-resolution ILI forecasts from flat-resolution
observations. Compared with causal methods, TDEFSI avoids searching optimal disease model
parameters over a high-dimensional space, because it does not need to identify any specific causal
models for the forecasting. Compared with data-driven methods (statistical and neural network
methods), TDEFSI explicitly models spatial and social heterogeneity in a region from the train-
ing data. It can capture the heterogeneous dynamics between high-resolution regions, as well as
underlying causal processes and mathematical theories. In addition, the large volume of synthetic
training data helps TDEFSI to overcome the risk of overfitting due to sparse observation data.

2.2 Data Augmentation for Time Series

Data augmentation in deep neural networks is the process of generating artificial data to reduce
overfitting. It has been shown to improve deep neural network’s generalization capabilities in
many tasks especially in computer vision tasks such as image or video recognition [75]. Various
augmentation techniques have been applied to specific problems, including affine transformation
of the original images [74, 81, 92] and unsupervised generation of new data using Generative
Adversarial Nets (GANs) [39, 60, 72, 103] or variational autoencoder (VAE) models [74], and so
on. However, the techniques for image augmentation do not generalize well to time series. The
main reason is that image augmentation is not expected to change the class of an image, while
for time-series data, one cannot confirm the effect of such transformations on the nature of a time
series. In what follows we introduce related work on time-series data augmentation.

Data augmentation for time-series classification. For time-series classification (TSC) prob-
lems, one of the most popular methods is the slicing window technique, originally introduced for
deep CNNs in Reference [24]. The method was inspired by the image cropping technique for com-
puter vision tasks [101]. In Reference [53], it was adopted to improve the CNNs’ mortgage delin-
quency prediction using customer’s historical transactional data. The authors in Reference [51]
used it to improve the Support Vector Machines accuracy for classifying electroencephalographic
time series. The authors in Reference [80] proposed a novel data augmentation method (includ-
ing window slicing, permutating, rotating, time-warping, scaling, magnitude-wrapping, jiterring,
cropping) specific to wearable sensor collected time-series data. Le Guennec et al. [54] extended
the slicing window technique with a warping window that generates synthetic time series by
warping the data through time. It extracts multiple small-size windows from a single window and
lengthens/shortens a part of the window data, respectively. The methods are reported to reduce
classification error on several types of time-series data. Forestier et al. [34] proposed to average
a set of time series as a new synthetic series. It relies on an extension of Dynamic Time Warping
(DTW) Barycentric Averaging (DBA).
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Data augmentation for time-series regression. Unlike data augmentations for TSC, data
augmentation for time-series regression (TSR) has not been well investigated yet to the best of our
knowledge. Bergmeir et al. [10] presented a method using Box-Coxfor transformation followed
by an STL decomposition to separate the time series into trend, seasonal part, and remainder. The
remainder was then bootstrapped using a moving block bootstrap, and a new series was assembled
using this bootstrapped remainder.

All above methods for TSC or TSR apply techniques directly on observed time sequences, which
generate synthetic data at the same resolution as the original data. In our problem, we try to
forecast at a higher resolution when there is no or very sparse high-resolution observations.

TDEFSI method. We generate synthetic high-resolution data using high performance
computing-based simulations of well-accepted causal processes that capture epdemic dynamics.
Different from data augmentation techniques introduced above, we synthesize high-resolution
data that are not available or quite sparse in the real world.

3 PROBLEM SETUP

Given an observed time series of weekly ILI incidence for a specific region, we focus on predicting
ILI incidence for both the region and its subregions in short-term. Without loss of generality, in
this article we consider making predictions for a state of the USA and all counties in the state, using
observations only from CDC state-level ILI incidence data [20]. In this setting, state-level forecast-
ing is flat resolution, while county-level forecasting is high resolution. The proposed framework
is not limited to this setting and can be generalized for subregion forecasting in any region, e.g.,
state-level forecasting in a country where only national-level surveillance data are available. Our
proposed method is different from traditional ILI incidence forecasting methods in that the model
is trained on synthetic ILI incidence data but forecasts by taking ILI surveillance data as inputs.

Let y = 〈y1,y2, . . . ,yT , . . .〉 denote the sequence of weekly state-level ILI incidence, where
yi ∈ R. Let yC = 〈yC

1 ,y
C
2 , . . . ,y

C
T
, . . .〉 denote the sequence of weekly ILI incidence for a partic-

ular countyC within the state. Assume that there are K countiesD = {C1,C2, . . . ,CK } in the state.
Let yDt = {yC

t |C ∈ D} denote ILI incidence of all counties in the state at week t . Suppose we are
given only state-level ILI incidence up to weekT . The problem is defined as predicting both state-
level and county-level incidence at week t , where t = T + 1, denoted as zt = (yt , y

D
t ), zt ∈ RK+1,

given 〈y1,y2, . . . ,yT 〉.
In our problem, when training the deep neural network models, we consider three types of

physical consistency requirements based on epidemiologic domain knowledge. They are tempo-

ral consistency, spatial consistency, and non-negative consistency. (i) Temporal consistency: The ILI
diseases transmit via person to person contacts. The number of infected cases at the current time
point depends on the number of infected cases at the previous time points. In addition, infected
persons’ incubation periods and infectious periods vary due to the heterogeneity among individu-
als. In our work, we use the long short term memory (LSTM) network [41] to capture the temporal
dependencies among variables. (ii) Spatial consistency: The high-resolution ILI incidence should
be consistent with the flat-resolution ILI incidence. In our problem, this consistency is represented
as yt =

∑
C ∈D yC

t , i.e., the state incidence equals the sum of ILI incidence at the county level.
(iii) Non-negative consistency: The number of infected cases at time t is either zero or a positive
value, denoted as yt ,y

C
t ≥ 0.

4 TDEFSI

4.1 Framework

The TDEFSI framework consists of three major components (shown in Figure 2): (i) Disease model

parameter space construction: Given a state and an existing disease model, we estimate a marginal
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Fig. 2. TDEFSI framework. In this framework, a region-specific disease parameter space for a disease model is
constructed based on historical surveillance data. Synthetic training data consisting of both state-level and
county-level weekly ILI incidence curves is generated by simulations parameterized by samples from the
parameter space. An LSTM-based deep neural network model is trained on the synthetic data. The trained
model produces forecasts by taking surveillance data as the input.

distribution for each model parameter based on the surveillance data of the state and its neigh-
bors; (ii) Synthetic training data generation: We generate a synthetic training dataset at both flat-
resolution and high-resolution scales for that state by running simulations parameterized from the
parameter space; and (iii) Deep neural network training and forecasting: We design a two-branch
deep neural network model trained on the synthetic training dataset and use surveillance data as
its inputs for forecasting. We will elaborate on the details in the following subsections.

4.2 SEIR-based Epidemic Simulation

We simulate the spread of the disease in a synthetic population via its social contact network. In
this work, we use the synthetic social contact network of each state in the USA (a brief description
of the methodology used for constructing the synthetic population and the social network can be
found in Appendix A). The SEIR disease model is widely used for ILI diseases [52]. Each person
is in one of the following four health states at any time: susceptible (S), exposed (E), infectious
(I), recovered or removed (R). A person v is in the susceptible state until he becomes exposed.
If v becomes exposed, then he remains so for pE (v ) days, called the incubation period, during
which he is not infectious. Then he becomes infectious and remains so for pI (v ) days, called the
infectious period. Both pE (v ) and pI (v ) are sampled from corresponding distributions, as shown
in Algorithm 1, e.g., pE (v ) ∼ {1 : 0.3, 2 : 0.5, 3 : 0.2} means that an exposed person will remain so
for 1 day with probability 0.3, 2 days with probability 0.5, and 3 days with probability 0.2, simi-
lar to PI (v ). Finally, he becomes removed (or recovered) and remains so permanently. While the
SEIR model characterizes within-host disease progression, between-host disease propagation is
modeled by transmissions from person to person with a probability parameter τ , through either
complete mixing or heterogeneous connections between people. With our contact network model,
the disease spreads in a population in the following way. It can only be transmitted from an in-
fectious node to a susceptible node. On any day, if node u is infectious and v is susceptible, then
disease transmission from u to v occurs with probability p (τ ,w (u,v )), where w (u,v ) represents
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the contact duration between node u and node v . The disease propagates probabilistically along
the edges of the contact network.

Various simulators are developed to model human mobility, disease spread, and public health
intervention. They include compartment-based patch models [33, 55, 58], as well as agent-based
models such as EpiFast [14], GSAM [70], and FluTE [22]. Any of these simulators can be used
in TDEFSI to generate synthetic training data. In this work, we adopt an agent-based simulator
EpiFast [14]. The outputs are individual infections with their days of being infected in a simulated
season. They can be aggregated to any temporal and spatial scale, such as daily (weekly) state-
(county-) level ILI incidence. Vaccine intervention IV can be implemented in EpiFast simulations,
by specifying the quantity of vaccines applied to the population in each week. Next, we describe
how to estimate a distribution on the parameter space P (pE ,pI ,τ ,NI , IV ) from CDC historical
data, where NI denotes the initial number of infections. In our simulations, NI of the population
are infectious while all the rest are susceptible at the beginning of the simulation.

4.3 Disease Model Parameter Space

Of the parameters, (pE ,pI ) can be taken from literature [59]. We assume that each of (τ ,NI , IV )
follows a distribution that can be estimated from historical data. For clarity, we define an epidemi-
ological week in a calendar year as ew, and a seasonal week in a flu season as sw, where ew (40) is
sw (1). The historical time series of CDC surveillance data (refers to historical training data) used
to construct parameter space is split into seasons at ew (40) of each year. That is, each flu season
starts from ew (40) of a calendar year and ends in ew (39) of the next year. Note that this applies to
the USA, but sw may be specified differently for other countries.

We want to highlight that the number of clinically attended cases and the reported or tested
cases are lower than the actual number of cases in the population. Additionally, reporting rates
can vary between regions. To address the gap between ILINet case count and population case
count, we scale the former with a scaling factor, called surveillance ratio. The ratio is different
among different states. See more details of the surveillance ratio in Appendix A.2.

First, we collect observations of each parameter value as follows:

• Initial Case Number (NI ): We collect the ILI incidence of sw (1) of each season for the
target state and its neighboring states (i.e., geographically contiguous states).

• Vaccine Intervention (IV ): We collect vaccination schedules of the past influenza seasons
in the USA [18]. Each schedule consists of timing and percentage coverage of vaccine appli-
cation throughout the season. Vaccine efficacy (reduction of disease transmission probabil-
ity) and compliance rate (probability that a person will take the vaccine) are set according
to a survey used in Reference [86], which is conducted by Gfk.com, under the National In-
stitutes of Health grant no. 1R01GM109718. This survey collects data on demographics of
the respondents and their preventive health behaviors during a hypothetical influenza out-
break. We assume that each person follows a common compliance rate and the state-level
vaccine schedule is the same as the nationwide schedule.

• Transmissibility (τ ): First, we compute the overall attack rate (i.e., the fraction of popu-
lation getting infected in the season) of each historical season for the target state and its
neighboring states. Then for each attack rate ar , say of season s and state r , we calibrate a
transmissibility value as the solution to minτ |AR (EpiFast (τ , PE , PI ,NI , IV )) − ar |, wherepE

and pI are sampled for each person from the distributions shown in Table 1; NI is the initial
case number of season s and state r ; IV is the vaccination schedule for season s; EpiFast (·)
is a simulation run on the population of state j with the parameters (τ , PE , PI ,NI , IV ); and
AR (·) computes attack rate from the output of EpiFast (·). Details of this process are shown
in Algorithm 1.
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ALGORITHM 1: Calibrating disease model parameter τ

Input: Simulator PS, CDC historical data histCDC , and synthetic social contact networks Network .

Output: Calibrated τ ∗.
pE ∼ {1 : 0.3, 2 : 0.5, 3 : 0.2} [59, 86];

pI ∼ {3 : 0.3, 4 : 0.4, 5 : 0.2, 6 : 0.1} [59, 86];

IV = ∅;
reдions = {state and its adjacent neighbors};
seasons = {available seasons of histCDC};
τ ∗ = ∅;
for r in reдions do

for s in seasons do

totalili (r,s ) = TOTAL(histCDC(r,s ) ) ;

ar (r,s ) =
totalil i (r ,s )

population (r )
;

τ ∗
(r,s )

= minτ |AR (EpiFast (τ ,PE , PI , IV ,NI (r,s ) ,Network(r,s ) )) − ar (r,s ) |;
τ ∗ = τ ∗ ∪ τ ∗

(r,s )

end

end

Second, for τ and NI , we fit the collected samples to several distributions including normal,
uniform.

Then we run KS-test to choose a best well fit distribution (refer to Appendix A.3 for more details).
For IV , we assume the six vaccination schedules follow a discrete uniform distribution. In this way,
a region-specific parameter space P is constructed.

We first implement our TDEFSI framework without considering interventions in the simula-
tions. Then we add IV to P to generate more realistic synthetic training data. This will improve
the forecasting performance of TDEFSI. We will discuss the impact of including IV on the fore-
casting performance of TDEFSI in Section 5.9.

4.4 Training Dataset from Simulations

For each simulation run, a specific parameter setting is sampled from P, and the simulator is
called to generate daily individual health states. These individual health states are aggregated to
get state- and county-level weekly incidences, called synthetic epicurves. Week 1 in the synthetic
epicurve corresponds to sw (1) of a flu season. Large volumes of high-resolution synthetic data are
generated by repeating the sampling and simulating process. Let us denote all simulated epicurves

by Ω = {(y(i ), y
D
(i )

) ∈ R�×(K+1) |i = 1, 2, . . . , r }, where � is the length of an epicurve (number of

weeks), K is the number of counties in the state, and r is the total number of simulation runs.
Algorithm 2 describes the generating process.

Compared with CDC surveillance data, the training dataset Ω is prominent in two aspects:
(i) it includes high-resolution spatial dependencies between subregions and (ii) the large volume of
synthetic training data reduces the possibility of overfitting when training a deep neural network
model. Thus, the trained model has better generalization ability.

4.5 TDEFSI: A Deep Neural Network Model

The Long Short Term Memory (LSTM) network [41] is adopted in our neural network architec-
ture to capture the inherent temporal dependency in the weekly incidence data. Figure 3 shows
unrolled k-stacked LSTM layers. Each LSTM layer consists of a sequence of cells. The number

ACM Transactions on Spatial Algorithms and Systems, Vol. 6, No. 3, Article 15. Publication date: April 2020.



TDEFSI 15:11

Fig. 3. Unrolled k-stacked LSTM layers. Each LSTM layer consists of a sequence of cells. The number of cells
depends on the number of input time points. In this figure, the input is a time series of y1, . . . ,yt−1, the

output comprises all the cell outputs h(k ) from the last layer k (“last” depthwise, not timewise). Each LSTM
layer consists of t − 1 cells. In the first LSTM layer, a cell will work as described in 1, e.g., cell 2 takes y2,

cell state c
(0)
1 and cell output h

(0)
1 from the previous cell 1 as inputs, then outputs (c

(0)
2 , h

(0)
2 ) so you could

feed them into next cell and feed h
(0)
2 into next layer. The first LSTM layer take y1, . . . ,yt−1 as the input, the

second layer take h
(0)
1 , . . . , h

(0)
t−1 as the input, and rest of the layers behave in the same manner.

ALGORITHM 2: Generating Training Dataset for TDEFSI

Input: Simulator PS, and Parameter space P.

Output: Simulated epicurves Ω = {(y(i ) , y
D
(i )

) |i = 1, 2, . . . , r }.
Ω = ∅;
for i = 1 to r do

P = Sample(P);

(y(i ) , y
D
(i )

) = PS(P );

Ω = Ω ∪ (y(i ) , y
D
(i )

)

end

of cells depends on the number of input time points. In this figure, the input is a time series of

y1, . . . ,yt−1, the output comprises all the cell outputs h(k ) from the last layer k (“last” depthwise,
not timewise). Each LSTM layer consists of t − 1 cells. In the first LSTM layer (layer 0), a cell will

work as described in Equation (1), e.g., cell 2 takes y2, cell state c
(0)
1 , and cell output h

(0)
1 from the

previous cell 1 as inputs, and then outputs (c(0)
2 , h

(0)
2 ) so you could feed them into the next cell

and feed h
(0)
2 into the next layer (layer 1). The first LSTM layer takes y1, . . . ,yt−1 as the input, the

second layer takes h
(0)
1 , . . . , h

(0)
t−1 as the input, and the rest of the layers behave in the same manner.

Let H (i ), 0 ≤ i ≤ k be the dimension of the hidden state in layer i . For the first layer, assume the
input of the current cell is yt−1. Then the computation within the cell is described mathematically
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Fig. 4. Within-season and between-season observations as the input for the TDEFSI neural network model.
In this graph, there are four flu seasons (rows). Nodes in each row denote weekly ILI incidence in each season,
which are ordered by sw . For a target week sw (t ) (black square), the model observes two kinds of information:
(i) within-season observations x1—the ILI incidence from the previous weeks back from week sw (t ) (green
rectangular); (ii) between-season observations x2—the historical ILI incidence from similar weeks of the past
seasons (yellow rectangular). z is the ILI forecasting of the target week. x1 and x2 are state-level ILI, while z

includes state and county-level ILI.

as:

i
(0)
t−1 = σ (W(0)

i · yt−1 + U
(0)
i · h

(0)
t−2 + b

(0)
i ) ∈ RH (0)

f
(0)
t−1 = σ (W(0)

f
· yt−1 + U

(0)
f
· h(0)

t−2 + b
(0)
f

) ∈ RH (0)

o
(0)
t−1 = σ (W(0)

o · yt−1 + U
(0)
o · h(0)

t−2 + b
(0)
o ) ∈ RH (0)

C̃
(0)
t−1 = tanh(W(0)

C
· yt−1 + U

(0)
C
· h(0)

t−2 + b
(0)
C

) ∈ RH (0)

C
(0)
t−1 = f

(0)
t−1 ◦ C

(0)
t−2 + i

(0)
t−1 ◦ C̃

(0)
t−1 ∈ R

H (0)

h
(0)
t−1 = o

(0)
t−1 ◦ C

(0)
t−1 ∈ R

H (0)
,

(1)

where σ and tanh are sigmoid and tanh activation functions. W ∈ RH (0)
,U ∈ RH (0)×H (0)

, and b ∈
RH (0)

are learned weights and bias. C
(0)
t−2, h

(0)
t−2 are the cell state and output of the previous cell.

Operator ◦ denotes element-wise product (Hadamard product). The cell computation is similar in

the layer i , but with yt−1 being replaced by h
(i−1)
t−1 ∈ RH (i−1)

and W ∈ RH (i )×H (i−1)
.

In traditional time-series models, ILI incidences of the previous few weeks are used as the
observations for the prediction of the current week. In TDEFSI, we use two kinds of obser-
vations: (i) Within-season observations, denoted as x1 = 〈yt−a , . . . ,yt−1〉, are ILI incidence from
previous a weeks that are back from time step t . (ii) Between-season observations, denoted as
x2 = 〈yt−�∗b , . . . ,yt−�∗1〉, are ILI incidences of the same sw from the past b seasons. They are used
as the surrogate information to improve forecasting performance. As shown in Figure 4, for ex-
ample, there are four seasons ordered by sw . The within-season observations are ILI incidence of
previous a = 3 weeks in current season. The between-season observations are ILI incidence of the
same sw (t ) from the past b = 3 seasons.

In TDEFSI model, we design a two-branch LSTM-based deep neural network model to cap-
ture temporal dynamics of within-season and between-season observations. As shown in Fig-
ure 5, the left branch consists of stacked LSTM layers that encode within-season observations x1 =

〈yt−a , . . . ,yt−1〉. The right branch is also LSTM based and encodes between-season observations
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Fig. 5. TDEFSI neural network architecture. This architecture consists of two branches. The left branch con-
sists of stacked LSTM layers that encodes state-level within-season observations x1, and the right branch
consists of stacked LSTM layers that encodes state-level between-season observations x2. A merge layer is
added to combine two branches and the output z is the state and county-level predictions.

x2 = 〈yt−�∗b , . . . ,yt−�∗1〉. A merge layer is added to combine the outputs of two branches. The final
output is ẑt that consists of state-level and county-level predictions (as defined in Section 3).

In the left branch, the output of the Dense layer is as follows:

Ol = ψl

(
wl · h(kl )

t−1 + bl

)
∈ RH , (2)

where kl is the number of LSTM layers in the left branch, H is the dimension of output of the left

branch, wl ∈ RH×H (kl )
and bl ∈ RH , andψl is the activation function.

Similarly, the output of the Dense layer in the right branch is as follows:

Or = ψr

(
wr · h(kr )

t−1 + br

)
∈ RH , (3)

where kr is the number of LSTM layers in the right branch, H is the dimension of output of the

right branch, wr ∈ RH×H (kr )
and br ∈ RH , andψr is the activation function.

The merge layer combines the output from two branches by addition, denoted as:

ẑt = ψ (w[Ol ⊕ Or ] + b) ∈ RK+1, (4)

where w ∈ R(K+1)×H , b ∈ RK+1,ψ is the activation function, and ⊕ denotes the element-wise ad-
dition.

This LSTM-based deep neural network model is able to connect historical ILI incidence infor-
mation to the current prediction. It also allows long-term dependency learning without suffering
the gradient vanishing problem. The number of LSTM layers is a hyperparameter that we tuned
by grid searching.

We are interested in a predictor f , which predicts the current week’s state-level and county-
level incidence zt based on the previous a weeks of within-season state-level ILI incidence x1 and
the previous b seasons of between-season state-level ILI incidence x2:

ẑt = f ([x1, x2]t ,θ ), (5)
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where θ denotes parameters of the predictor, ẑt denotes the prediction of zt . Note that the output

of f is always one week ahead forecast in our model.
The optimization objective is as follows:

min
θ
L (θ ) =

∑
t

‖zt − f ([x1, x2]t ,θ )‖22 + μϕ (ẑt ) + λδ (ẑt ), (6)

where ϕ (ẑt ) is an activity regularizer added to the outputs for spatial consistency constraint ŷt =∑
C ∈D ŷC

t :

ϕ (ẑt ) =
������
ŷt −

∑
C ∈D

ŷC
t

������
, (7)

and δ (ẑt ) is an activity regularizer added to the outputs for non-negative consistency constraint
ŷt , ŷ

C
t ≥ 0:

δ (ẑt ) =
����

1

K + 1

∑
max(−ẑt , 0)

���� , (8)

μ, λ are two pre-specified hyperparameters, min(ẑt , 0) returns element-wise minimum value, K is
the number of counties in the state, and δ (ẑt ) returns the absolute mean of element-wise minimum
values. The Adam optimization algorithm [50] is used to learn θ . How the activity regularizers
affect the model performance will be discussed in Section 5.8.

Variants of TDEFSI. The two-branch neural network architecture has multiple variants:
(i) TDEFSI: Two-branch neural network as shown in Figure 5. (ii) TDEFSI-LONLY: Only the left
branch is used to take within-season observations. (iii) TDEFSI-RDENSE: The left branch com-
prises of stacked LSTM layers, while the right branch only uses Dense layers, which means that
the model does not care about the temporal relationship between between-season data points. We
will discuss the results of different variants in Section 5.

Training and forecasting. In the training process, we use synthetic training data Ω to train the
TDEFSI models. The historical surveillance data are only used for constructing the disease model
parameter space P. In the predicting step, the trained model takes state-level surveillance as input
and makes one week ahead forecasts at both state and county levels. TDEFSI models are trained
once before the target flu season starts, then can be used for forecasting throughout the season.

Multi-step forecasting. In practical situations, we are interested in making predictions for
several weeks ahead using iterative method. In TDEFSI, the left branch of the model appends the
most recent state-level prediction to the input for predicting the target of the next week, and the
right branch uses the state-level ILI incidences from the past seasons with sw equal to the next
week number.

5 EXPERIMENTS

In this section, we will describe datasets, comparison methods, experiment setup, and evaluation
metrics. A brief summary of TDEFSI settings is shown in Figure 6. And we present results of per-
formance analysis on both simulated testing data and real ILI testing data and conduct sensitivity
analysis on physical consistency constraints and vaccination-based interventions. We also use a
case study to demonstrate the capability of TDEFSI model to provide uncertainty in predictions.
A brief summary of the experiment results is shown in Figure 7. In all experiments the models are
trained and tested for each state independent of other states.

5.1 Datasets

5.1.1 Real Dataset. CDC ILI incidence [20]: The CDC surveillance data used in the experiments
are the weekly ILI incidence at state level from 2010 ew (40) to 2018 ew (18). Note that they may be
revised continuously until the end of a flu season. We use the finalized data in this article. ILI Lab
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Fig. 6. Brief summary of TDEFSI settings.

tested flu positive counts of New Jersey [26]: To evaluate the county-level forecasting performance,
we collect state-level and county-level ILI Lab tested flu positive counts of season 2016–2017 and
2017–2018 in NJ. The data are available from ew (40) to the next year’s ew (20). We use it as the
ground truth when evaluating county-level forecasting. Google data [36, 38]: The Google correlate
terms (keyword: influenza) of each state are queried; we choose the top 100 terms. Then the Google
Health Trends of each correlated term for each state is collected and aggregated weekly from
2010 ew (40) to 2018 ew (18). Weather data [21]: We download daily weather data (including max
temperature, min temperature, precipitation) from Climate Data Online (CDO) for each state and
compute weekly data as the average of daily data from 2010 ew (40) to 2018 ew (18). Google data and
weather data are used as surrogate information in comparison methods (described in Section 5.2).

We divide the data into real-training: the beginning 80% of season 2010–2011 to season 2015–
2016 (251 data points per state); real-validating: the last 20% of season 2010–2011 to season 2015–
2016 (63 data points per state); real-testing: season 2016–2017 to season 2017–2018 (83 data points
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Fig. 7. Brief summary of our experimental analysis.

per state); and county-level real-evaluating: county-level ILI lab tested flu positive counts for NJ
(64 data points per county of NJ). For TDEFSI models, we use the training dataset to learn disease
parameter space, while for baselines, we use training dataset to train the model directly and use
validating dataset to validate and choose the final models. Testing and county-level evaluating
datasets are used for all methods to evaluate their performance. And the final result of each method
is the average value of 10 trials.

5.1.2 Simulated Dataset. For each state, we generate 1,000 simulated curves of weekly ILI in-
cidence at both state level and county level. Of each curve, the first week sw (1) corresponds to
epi-week 40 ew (40) of real seasonal curves. We divide the data into sim-training: 80% of 1,000
simulated curves; sim-validating: 15% of 1,000 simulated curves; and sim-testing: 5% of 1,000 sim-
ulated curves. The synthetic data are only used for training and validating of TDEFSI models. No
baselines are applied for synthetic data.

5.2 Methods Used for Our Comparative Analysis

Our method is compared with five state-of-the-art ANN methods, statistical methods, and causal
methods. They are as follows:

• LSTM (CDC data) [41] and AdapLSTM (CDC + weather data) [82] representing artificial
neural network methods;
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Table 1. Marginal Distributions of the Parameter Spaces for VA and NJ

Parameter State Name Distribution P-value

pE VA Discrete distribution (1:0.3, 2:0.5, 3:0.2) [59, 86] —
NJ Discrete distribution (1:0.3, 2:0.5, 3:0.2) [59, 86] —

pI VA Discrete distribution (3:0.3, 4:0.4, 5:0.2, 6:0.1) [59, 86] —
NJ Discrete distribution (3:0.3, 4:0.4, 5:0.2, 6:0.1) [59, 86] —

τ VA Normal N (μ = 4.88e−5,δ = 9.33e−7) 0.74
NJ Normal N (μ = 4.63e−5,δ = 1.05e−6) 0.85

NI VA Uniform U (7355, 16278) 0.85
NJ Uniform U (567, 7647) 0.40

IV VA Discrete uniform 6 vaccination schedules [18] —
NJ Discrete uniform 6 vaccination schedules [18] —

The null hypothesis for the two-sample KS test is that both groups were sampled from populations with identical

distributions. If the p-value returned by the KS test is less than a significance level, then we reject the null

hypothesis. In our experiments, we do not specify a significance level but instead choose the distribution with

the largest p-value among multiple assumed distributions.

• SARIMA (CDC Data) [9] and ARGO (CDC + Google data) [97] representing statistical meth-
ods; and

• EpiFast [7] representing causal models.

AdapLSTM, LSTM, ARGO, and SARIMA can make flat-resolution forecasting directly from the
model, then flat-resolution forecasts can be turned into high-resolution forecasts by multiplying by
county-level population proportions. EpiFast is applied for both flat-resolution and high-resolution
forecasting directly.

5.3 Experiment Setup

In this section, we describe the experiment settings, including simulation setting and TDEFSI
model setting. Note that we conduct the experiments on two states of the USA, i.e., VA and NJ.
State-level forecasting performance will be evaluated on both VA and NJ, while county-level fore-
casting performance is evaluated on NJ only due to the limitation on the availability of high-
resolution observations.

Disease model settings for generating simulated training data. The simulation parameter
settings are listed in Table 1. The length of a simulated epicurve is set to � = 52, and the total
runs of simulations is r = 1,000. We adopt EpiFast as the simulator, PS=‘EpiFast’. More details on
parameter space learning are described in Section A.3.

TDEFSI model settings. We set up the architectures for TDEFSI and its variants as follows:

• TDEFSI: The left branch consists of two stacked LSTM layers, one dense layer; the right

branch consists of one LSTM layer, one dense layer. kl = 2, kr = 1,H (kl ) = H (kr ) = 128,H =
256,ψl ,ψr ,ψ are linear functions.

• TDEFSI-LONLY: The left branch consists of two stacked LSTM layers, one dense layer and
no right branch. kl = 2, H (kl ) = 128, H = 256,ψl ,ψ are linear functions.

• TDEFSI-RDENSE: The left branch consists of two stacked LSTM layers, one dense layer;
the right branch consists of one dense layer. kl = 2, kr = 0, H (kl ) = H (kr ) = 128, H = 256,
ψl ,ψr ,ψ are linear functions.

For all TDEFSI models, we set a = 52, b = 5, (μ, λ)V A = (0.1, 0.1), (μ, λ)N J = (1, 0.01). We use
Adam optimizer with all default values. We choose the final model using grid searching with sim-
validating dataset. The grid searching space is about 500 models, including a(10, 20, 30, 40, 50),
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b (5), μ (0, 0.001, 0.01, 0.1, 1), λ(0, 0.001, 0.01, 0.1, 1), kl (1, 2), H (128, 256). In the training process,
the best models are selected by early stopping when the validation accuracy does not increase
for 50 consecutive epochs, and the maximum epoch number is 300. Unless explicitly noted, in
our experiments, these hyperparameters are set with the values described above. The settings of
comparison methods are elaborated in Appendix A.4.

Our experiments are conducted on two testing datasets: (i) synthetic testing dataset and (ii) real
seasonal ILI dataset.

Experimental setup for testing on simulated dataset. We make predictions for 10 weeks
ahead, i.e.,horizon = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. Only TDEFSI is tested and analyzed using sim-testing
dataset. No comparison methods are applied, since there is no surrogate information correspond-
ing to the simulated seasons.

Experimental setup for testing on real seasonal ILI dataset. In these experiments, we eval-
uate TDEFSI models and all comparison methods. The experiments are performed on two states:
Virginia (VA) and New Jersey (NJ). The county-level evaluation is conducted on NJ counties. For
TDEFSI and its variants, the real-training dataset is used to estimate disease parameter space, while
for all baselines, real-training and real-validating are used for training directly. The county-level
real-evaluating dataset is only used for evaluation of the performance of county-level predictions.
At each time step in the testing season, each model makes predictions up to five weeks ahead, i.e.,
horizon = {1, 2, 3, 4, 5}.

5.4 Performance Metrics

The metrics used to evaluate the forecasting performance are root mean squared error (RMSE),
mean absolute percentage error (MAPE), and Pearson correlation (PCORR).

• Root mean squared error (RMSE):

RMSE =

√√
1

n

n∑
i=1

(yi − ŷi )2 (9)

• Mean absolute percentage error (MAPE):

MAPE = �
�

1

n

n∑
i=1

������
yi − ŷi

yi + 1

������
�
�
∗ 100, (10)

where the denominator is smoothed by 1 to avoid zero values.
• Pearson correlation (PCORR):

PCORR =
cov (y, ŷ)

σyσŷ
, (11)

where cov (y, ŷ) is the covariance of y and ŷ, and σ is the standard deviation.

Among these metrics, RMSE and MAPE evaluate ILI incidence prediction accuracy, PCORR eval-
uates linear correlation between the true curve and the predicted curve.

5.5 Exploratory Analysis of Spatial Dynamics of NJ County Level Dataset

The spatiotemporal spread of influenza in a state depends on the social demographic attributes
(e.g., population density) of the counties as well as the individual behavior and movement between
counties. In this subsection we explore the county demographic data and between county commute
data using visualization, and discuss their association with the disease spread spatially over time.
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Fig. 8. Statistics of NJ counties [43]. (a) Population of NJ counties, 2020. (b) Population density of NJ counties,
2010. The population density is the population per square mile. The values shown in the map of both statistics

are normalized by ( x−min
max−min ) so that the range is [0, 1]. The counties located in the eastern NJ have large

population size, and the counties around the northeastern area are of especially high population density.

In Figure 8, we show the statistics for NJ counties including population and population density
(i.e., population per square mile). Values are normalized by using ( x−min

max−min
) so that the range is

[0, 1]. In general the counties located in northwestern NJ and southwestern NJ have small popula-
tion and population density, while the counties concentrated in northeastern NJ have large ones.

From county-to-county commute counts data from the American Community Survey (ACS)
2009–2013 [1], we extract commute counts of which both source and destination are NJ counties.
In Figure 9, we show the adjacency matrix of commute flows with the counties of NJ arranged
according to spatial neighborhood. The flow in the figure is the normalized commute counts by
the population size of the source county. A larger value means a larger commute flow between the
two counties. The figure shows larger commute flows between counties that are physically close
to each other. Nevertheless, there is substantial flow between counties that are far away from each
other—this small-world-like flow is a hall-mark of human mobility patterns. During an epidemic,
counties with large populations and high connectivity serve as hubs—these counties often start
the epidemic early and also aid the spread to other counties.

In Figure 10 we visualize the correlation between county demographic attributes (population
size and density) and county epidemic features (peak timing and peak intensity) in the ground-
truth data. While counties with larger populations or higher population density seem to peak later
in the season, this is not always true: There are small, low density counties that peak late. But
there is no high-density county that peaks early. This suggests that the spatial features, e.g., the
conventional geographic distance or effective distance (defined based on the commute flow matrix)
[15] to the source county (where the epidemic starts), may play an important role in determining
the disease spread trajectory among the counties of the state.

In Figure 11 we show the change of the ILI case numbers of New Jersey counties through the
weeks sw of the 2017–2018 influenza season, at weeks 10, 13, 18, 21, and 25. For this season, one
can note that the flu starts to spread rapidly in the east part of the state where the counties have
large populations. Interested readers can find a week-by-week animation in Reference [88]. The
spreading process shows spatial heterogeneity over the counties and is correlated to the population
size and commute flow.
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Fig. 9. (a) Adjacency matrix of commute flows with the counties of NJ arranged according to spatial neigh-
borhood. We use the Regions of New Jersey as defined by the New Jersey State Department of Tourism (color
of the labels match the map). Note that the visualization shows the normalized commute counts by county
population size. A larger value means a larger commute flow between the two counties. The self-loop flows
are not shown, since they’re an order of magnitude larger than the rest. (b) New Jersey county regions map
(downloaded from Reference [78]).

5.6 Performance on Simulated Testing Dataset

In this experiment, we tested TDEFSI on sim-testing dataset for VA. We set λ = μ = 0, and set
b = 5, and then conduct sensitivity analysis on the length of within-season observations, i.e., a =
{10, 20, 30, 40, 52}. Figure 12 shows the state-level forecasting curves (partial curves of sim-testing)
in horizon 1, 5, 10 using various a. The black curve is the ground truth, while the other colors
correspond to different a values. By comparing across (a), (b), (c), we find that the predictive power
of the model weakens as the horizon increases. In addition, the model with a seasonal length of
a = 52 performs the best.

To verify our observations, we evaluate the model performances with metrics RMSE, MAPE,
and PCORR at both the state level (shown in Figure 13) and county level (shown in Figure 14). The
best model is always the one with a = 52. This is not random. It is the manifestation of a flu season
normally consisting of 52/53 weeks, i.e., the seasonality of the time-series data. Thus, we suggest
setting a to a multiple of 52 in practice. Unless explicitly stated, we fix a = 52,b = 5 in the rest of
our experiments.

5.7 Performance on Real Seasonal ILI Testing Dataset

5.7.1 Performance of Flat-resolution Forecasting. We forecast state-level ILI incidence on real-
testing dataset for VA and NJ. Table 2 shows the performance on RMSE, MAPE, and PCORR for (a)
VA and (b) NJ with horizon={1, 2, 3, 4, 5}. Figure 15 presents the overall performance across two
states, two seasons, and five horizons. (i) Performance on RMSE: In VA, TDEFSI, TDEFSI-LONLY,
TDEFSI-RDENSE, SARIMA, ARGO, and LSTM achieve similar performance that is better than Epi-
Fast and AdapLSTM. Compared with other methods, AdapLSTM does not perform well with small
horizons while EpiFast has poor performance with large horizons. In NJ, TDEFSI, TDEFSI-LONLY,
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Fig. 10. The correlation between the peak (including peak week and peak intensity) and the population
density of NJ counties. The x-axis denotes peak week ordered by sw , and the y-axis represents log value of
the population density. The bubble color and size denote peak intensity and population size. The peak week
and peak intensity are only partially correlated with county population size/density.

Fig. 11. The number of ILI cases of New Jersey counties, season 2017–2018. (a) Week 10. (b) Week 13.
(c) Week 18. (d) Week 21. (e) Week 25. Note that the flu starts to spread rapidly in regions 2, 3, 4, and 6
that have counties with large population.

Fig. 12. State-level forecasting curves on sim-testing dataset with (a) horizon 1, (b) horizon 5, and (c) horizon
10. The x-axis is the week number of 10 simulated curves. Various settings of a are compared. The black curve
is the ground truth, while the other colors correspond to models with different values of a. It is observable
that the predictive power of the model weakens as the horizon increases. The model (magenta curve) with
a = 52 performs the best.
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Fig. 13. State-level forecasting performance on sim-testing dataset of VA with various length of within-
season observations a = {10, 20, 30, 40, 52}, which is evaluated by RMSE (left), MAPE (middle), and PCORR
(right). The x-axis represents horizons from 1 to 10. The value is averaged on all weeks of testing curves. A
log y-scale is used in RMSE and MAPE. Across different horizons and metrics, the best model is always the
model with a = 52.

Fig. 14. County-level forecasting performance on sim-testing dataset of VA with various length of within-
season observations a = {10, 20, 30, 40, 52}, which is evaluated by RMSE (left), MAPE (middle), and PCORR
(right). The x-axis represents horizons from 1 to 10. The value is averaged on all weeks of testing curves. A
log y-scale is used in RMSE and MAPE. Across different horizons and metrics, the best model is always the
model with a = 52, especially with larger horizons.

and TDEFSI-RDENSE consistently outperform others across the horizon. Overall, TDEFSI and
its variants slightly outperform comparison methods in RMSE. (ii) Performance on MAPE: In VA,
SARIMA performs the best overall among all methods. In NJ, TDEFSI-RDENSE achieves the best
performance closely followed by SARIMA. Overall, SARIMA outperforms others, and TDEFSI and
its variants achieve similar performance with ARGO, which are better than LSTM, AdapLSTM, and
EpiFast. (iii) Performance on PCORR: In VA, ARGO performs the best with horizon 1,2,3 and TDEFSI
achieves better performance with horizon 4,5. In NJ, TDEFSI performs the best and TDEFSI-
LONLY, TDEFSI-RDENSE achieve similar performance. Overall, TDEFSI and its variants slightly
outperform SARIMA, ARGO, and LSTM, while they are much better than AdapLSTM and EpiFast.

Figure 16 shows the weekly state-level model performance measured on season 2017–2018 using
RMSE: The x-axis denotes ew number, the value is averaged over five horizons. A log y-scale is
used. The black vertical line marks the peak week of the season. We observe that these models
perform with great variance around the beginning and the end of a season than in weeks near the
peak.

The above discussion can be summarized as follows:

• Our TDEFSI and its variants achieve comparable/better performance than the other meth-
ods on the state-level ILI forecasting.

• EpiFast and AdapLSTM perform relatively worse than other methods in our experiments.

5.7.2 Performance of High-resolution Forecasting. The performance of county-level forecasts is
evaluated on NJ counties. Note that EpiFast, TDEFSI, TDEFSI-LONLY, and TDEFSI-RDENSE make

ACM Transactions on Spatial Algorithms and Systems, Vol. 6, No. 3, Article 15. Publication date: April 2020.



TDEFSI 15:23

Table 2. State Level Performance across Season 2016–2017 and 2017–2018 for VA
and NJ with Horizon = 1, 2, 3, 4, 5

VA NJ

RMSE 1 2 3 4 5 1 2 3 4 5

SARIMA 824 1463 2059 2440 2682 218 464 690 891 1050

ARGO 1073 1592 2072 2444 2580 313 512 717 760 874

LSTM 1083 1629 2013 2273 2438 240 470 699 902 1070

AdapLSTM 2012 2038 2264 2382 2449 586 729 640 871 1006

EpiFast 1300 2087 2989 3674 4284 238 382 567 725 871

TDEFSI 1000 1447 2014 2358 2544 174 344 511 665 757

TDEFSI-LONLY 900 1572 2119 2582 2742 197 373 531 696 801

TDEFSI-RDENSE 1109 1686 2136 2421 2540 193 358 506 630 711

MAPE 1 2 3 4 5 1 2 3 4 5

SARIMA 15.96 32.57 50.62 65.60 77.94 13.28 24.32 35.62 48.32 59.99

ARGO 31.06 54.00 73.69 78.97 77.85 24.96 33.14 44.52 50.05 54.60

LSTM 38.40 49.29 58.80 67.98 71.00 39.44 78.53 131.19 189.79 243.40

AdapLSTM 42.67 51.22 61.02 67.33 70.60 64.30 64.77 65.56 74.14 76.50

EpiFast 31.14 53.45 84.32 124.05 167.44 30.32 32.40 50.75 64.61 76.27

TDEFSI 25.75 40.69 58.61 74.06 88.95 18.16 29.74 43.49 55.12 66.09

TDEFSI-LONLY 22.40 35.18 59.27 89.95 123.70 15.56 32.21 45.74 60.46 72.13

TDEFSI-RDENSE 31.89 51.69 76.94 101.38 125.23 15.17 21.74 29.19 37.95 44.14

PCORR 1 2 3 4 5 1 2 3 4 5

SARIMA 0.9461 0.8271 0.6468 0.4925 0.3788 0.9541 0.8173 0.6421 0.4611 0.3195

ARGO 0.9590 0.8728 0.7219 0.4518 0.3218 0.9444 0.8005 0.6043 0.4530 0.2921

LSTM 0.9223 0.7890 0.6350 0.5050 0.4101 0.9603 0.8542 0.6995 0.5340 0.3939

AdapLSTM 0.7048 0.6397 0.5174 0.4307 0.3818 0.8113 0.5912 0.7686 0.4477 0.2753

EpiFast 0.8876 0.7665 0.5616 0.3906 0.2340 0.9573 0.8535 0.7044 0.3835 0.2841

TDEFSI 0.9358 0.8487 0.6892 0.5555 0.4647 0.9683 0.8773 0.7348 0.5639 0.4247

TDEFSI-LONLY 0.9460 0.8776 0.7037 0.5074 0.3266 0.9659 0.8697 0.7288 0.4946 0.3245

TDEFSI-RDENSE 0.9043 0.7824 0.6182 0.4409 0.2826 0.9654 0.8692 0.7280 0.5630 0.4248

The best value is marked in bold, and the second best value is marked with underline.

Fig. 15. State-level performance (RMSE, MAPE, PCORR). The value is averaged across two states, two sea-
sons, and five horizons.

county-level predictions directly from models, while the other baselines obtain county-level pre-
dictions by multiplying state-level prediction with county population proportions. Table 3 shows
the forecasting performance on RMSE, MAPE, PCORR with horizon={1, 2, 3, 4, 5}. The value is the
average across weeks and counties. Figure 17 presents the overall performance across all counties,
weeks, horizons. From the table we observe that SARIMA performs well with horizon = 1. TDEFSI
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Fig. 16. State-level performance by weeks (RMSE). (a) VA, 2017–2018; (b) NJ, 2017–2018. TDEFSI and its
variants, and all comparison methods are evaluated and compared. The x-axis denotes ew number, the value
is averaged on five horizons. A log y-scale is used. The black vertical line marks the peak week of the season
in the state.

Table 3. County Level Performance for Counties of NJ with Horizon = 1, 2, 3, 4, 5

NJ-Counties
RMSE 1 2 3 4 5

SARIMA 30.58 38.02 48.60 58.92 67.68
ARGO 33.69 39.89 49.61 51.46 57.35
LSTM 33.80 41.95 52.25 61.56 68.30

AdapLSTM 36.67 45.30 39.46 51.70 59.60
EpiFast 34.34 36.74 40.51 47.40 54.09
TDEFSI 35.17 31.40 34.70 40.44 45.95

TDEFSI-LONLY 33.13 36.45 42.41 50.63 56.22
TDEFSI-RDENSE 34.79 31.59 35.22 40.98 46.35

MAPE 1 2 3 4 5
SARIMA 575.19 550.74 540.04 525.20 525.57

ARGO 649.32 552.18 498.42 430.74 366.89
LSTM 745.52 876.56 1066.80 1264.64 1417.91

AdapLSTM 584.18 489.51 417.72 599.53 717.61
EpiFast 712.97 632.96 577.74 519.37 487.54
TDEFSI 260.95 247.70 209.69 270.58 308.95

TDEFSI-LONLY 603.33 528.62 478.08 454.52 435.50
TDEFSI-RDENSE 614.95 499.13 412.68 360.99 315.78

PCORR 1 2 3 4 5
SARIMA 0.8645 0.7474 0.5678 0.3806 0.2211

ARGO 0.8606 0.7388 0.5455 0.3922 0.2211
LSTM 0.8611 0.7699 0.6132 0.4234 0.2597

AdapLSTM 0.7260 0.5150 0.6717 0.3710 0.2205
EpiFast 0.8555 0.7762 0.6450 0.3530 0.2133
TDEFSI 0.7877 0.8500 0.7835 0.6425 0.4710

TDEFSI-LONLY 0.8499 0.7669 0.6184 0.4146 0.2176
TDEFSI-RDENSE 0.7860 0.8063 0.7056 0.5467 0.3774

The value is the average of 21 counties of NJ across season 2016–2017 and 2017–2018. The best value is

marked in bold, and the second best value is marked with underline.
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Fig. 17. County-level performance (RMSE, MAPE, PCORR). The value is averaged on two seasons, five hori-
zons, and 21 counties of NJ.

Fig. 18. Comparison of the county-level spatial forecasting performance between TDEFSI and EpiFast for NJ,
season 2017–2018. (a) RMSE-ratio; (b) MAPE-ratio; (c) PCORR-ratio. For each county in NJ, the ratio value
of the county is computed using Equation (12), which is the average value across horizons. A value larger
than 1 (red) means TDEFSI outperforms EpiFast, a value equal to 1 (white) means they both perform equally,
and a value smaller than 1 (green) means EpiFast performs better than TDEFSI. The absolute magnitude of
the value denotes the significance of the difference of the two models’ performance. The comparison results
exhibit that TDEFSI performs better than EpiFast in the counties located in western NJ.

consistently outperforms others across horizons, followed by TDEFSI-RDENSE. Among TDEFSI
variants, TDEFSI and TDEFSI-RDENSE perform better than TDEFSI-LONLY, which indicates that
the between-season observations are helpful for improving forecasting accuracy. The figure shows
consistent results with the table. Overall, our method outperforms the comparison methods on the
county-level forecasting.

Heterogeneous high-resolution forecasting. To better understand the results from a spatial
perspective, we compare results between TDEFSI and EpiFast in Figure 18. The reason we choose
to compare these two methods is that they both can make high-resolution predictions directly
from the models. For each county in NJ, we compare TDEFSI and EpiFast using a ratio value for
each of three metrics defined as:

RMSE − ratio =
1
m

∑m
i=1 RMSEi (EpiFast )

1
m

∑m
i=1 RMSEi (TDEFSI )

MAPE − ratio =
1
m

∑m
i=1 MAPEi (EpiFast )

1
m

∑m
i=1 MAPEi (TDEFSI )

PCORR − ratio =
1
m

∑m
i=1 (PCORRi (TDEFSI ) + 1)

1
m

∑m
i=1 (PCORRi (EpiFast ) + 1)

,

(12)

ACM Transactions on Spatial Algorithms and Systems, Vol. 6, No. 3, Article 15. Publication date: April 2020.



15:26 L. Wang et al.

where m is the number of horizons. The ratio is averaged across all horizons. For any of these
ratios, a value larger than 1 means TDEFSI outperforms EpiFast; a value close to 1 means they
have similar performance; and a value smaller than 1 means EpiFast performs better than TDEFSI.

From Figure 18(a) RMSE-ratio, we observe that TDEFSI significantly outperforms EpiFast in
all counties (all counties show red colors) especially in the western counties of NJ. In (b) MAPE-
ratio, TDEFSI performs better than EpiFast in 11 of 21 counties, most of which are located in
the west side of NJ. And (c) PCORR-ratio shows that TDEFSI constantly outperforms EpiFast
in all counties (all in red colors). The comparison results exhibit that TDEFSI performs bet-
ter than EpiFast in the counties located in western NJ. EpiFast tries to find a model that best
matches the state-level observations, and use it to make predictions. However, the identified
model is usually locally optimal due to the limitation of the searching algorithm and the com-
putational efficiency. In our experiments, we run the searching algorithm once and then find
a locally optimal model that performs fairly well in eastern NJ counties but not in western NJ
counties. If we run the searching algorithm again, then we will find another locally optimal
model that might perform well in western NJ counties instead. In TDEFSI model, the deep neu-
ral network model allows TDEFSI to learn from many models. What is learned is an ensemble
of all models. Thus, TDEFSI is more robust than EpiFast in different runs of the flu forecasting
experiment.

5.7.3 Discussion. In general, for state level, AdapLSTM and EpiFast do not perform very well
in our experiments compared with other methods. For AdapLSTM, weather features are consid-
ered for post adjustment of LSTM outputs. As stated in Reference [82], the weather factors are
estimated using time delays computed by a priori associations and selected by the largest confi-
dence. However, in our experiment, they all show very low confidences (less than 0.3). This may
cause arbitrary adjustment for predictions and consequently poor performance. For EpiFast, one
possible reason is that we did not find a good estimate of the underlying disease model for a
specific region and season due to the noisy CDC observations. If we rank the performance of
all methods, then ARGO performs slightly better on VA than on NJ. The possible reason is that
about 80% of the top 100 Google correlated terms for NJ are irrelevant to flu and most of them
have zero frequencies, while the top 100 correlated terms for VA are of good quality. This will
give ARGO a better performance on VA than on NJ. Similarly, LSTM performs relatively better
on VA than on NJ. One possible reason is that LSTM cannot learn a pattern that has never oc-
curred in the historical observations. So its performance depends on whether a similar epicurve
occurred in previous seasons. As shown in Figure 19, the epicurve of VA 2017–2018 is similar
to that of VA 2014–2015, and 2016–2017 is similar to 2012–2013. However, the epicurve of NJ
2017–2018 seems to be much higher than all previous ones, as well as 2016–2017. Actually, this
is the limitation of all data-driven models. On the contrary, TDEFSI models have stable perfor-
mance on both VA and NJ. They manage to avoid overfitting through training on a large volume
of synthetic training data. In addition, the simulated training dataset includes many realistic sim-
ulated patterns that are unseen in the real world, thus provides a better generalizability to our
models.

As seen through the results, TDEFSI enables high-resolution forecasting that outperforms base-
lines. Meanwhile, it achieves comparable/better performance than the comparison methods at
state-level forecasting. And in our framework, the large volume of realistic simulated data al-
lows us to train a more complex DNN model and reduces the risk of overfitting. Our experiments
demonstrate that TDEFSI integrates the strengths of ANN methods and causal methods to improve
epidemic forecasting.
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Fig. 19. CDC surveillance ILI incidence of VA (blue dash line) and NJ (red dot line). It is observable that, for
testing season 2017–2018, a similar epi-curve (i.e., similar curve shape and the peak size) occurs at season
2014–2015 in VA, while no similar seasons could be found in NJ.

Table 4. Hyperparameters of TDEFSI Model and Their Values for Sensitivity Analysis

Parameters Description Values
a length of within-season observations 10, 20, 30, 40, 52
b length of between-season observations 5
λ coefficient of spatial regularizer 0, 0.001, 0.01, 0.1, 1, 10, 100
μ coefficient of non-negative regularizer 0, 0.001, 0.01, 0.1, 1, 10, 100

There are many hyperparameters in TDEFSI models, such as input dimension a, b , consistency coefficiency

μ, λ, number of hidden layers kr , kl , number of hidden units H (kl ), H (kr ), H , learning rate, training epoch,

and so on. In our experiments, we choose the final model by using grid searching on the hyperparameters

using sim-validating dataset. In the training process, the best models are selected by early stopping when the

validation accuracy does not increase for 50 consecutive epochs, and the maximum epoch number is 300.

5.8 Physical Consistency Constraints

In this section, we conduct sensitivity analysis on two regularizer coefficients μ and λ in Equa-
tion (6), which control the weights of the spatial constraint ϕ and non-negative constraint δ in
the loss function. μ = 0 means no spatial constraint and λ = 0 means no non-negative constraint.
We train TDEFSI by setting a = 52,b = 5 with various μ, λ values shown in Table 4. We then use
the trained models to make predictions for Season 2017–2018 of VA and NJ. The performance is
evaluated using RMSE.

Spatial consistency. The experiments are conducted using λ = 0 and μ = {0, 0.001, 0.01,
0.1, 1, 10, 100}. We evaluate the spatial consistency by computing RMSE of the predicted
state-level ILI incidence and the summation of the predicted county-level ILI incidence, i.e.,√

1
n

∑n
i=1 (ŷi −

∑
C ∈D ŷC

i )2. Figure 20 shows the spatial consistency error measured by RMSE on

(a) VA, 2017-2018 and (b) NJ, 2017–2018. The results show that the spatial consistency error does
not vary much with horizon, but significantly depends on μ. The possible reason is that, in the
TDEFSI model, the input is only state-level data, so the LSTM layers learn the temporal pattern
on state-level time sequence that closely relates to model performance with horizons. However,
spatial information is not propagated along the cells during training, but only compounds in the
last step of outputs, thus is not impacted by horizons. The optimal μ differs between states. The re-
sults indicate that TDEFSI enables the spatial consistency with a proper μ value. However, a better

ACM Transactions on Spatial Algorithms and Systems, Vol. 6, No. 3, Article 15. Publication date: April 2020.



15:28 L. Wang et al.

Fig. 20. Spatial consistency error (computed as
√

1
n

∑n
i=1 (ŷi −

∑
C ∈D ŷC

i )2) on (a) VA, 2017–2018; (b) NJ,

2017–2018. The coefficient of the spatial consistency regularizer is set to μ = {0, 0.001, 0.01, 0.1, 1, 10, 100}.
The results show that the spatial consistency error does not vary much with horizon but significantly depends
on μ. The optimal μ differs between states.

Fig. 21. TDEFSI performance with spatial consistency constraints of different coefficients μ = {0, 0.001, 0.01,
0.1, 1, 10, 100}. The performance is evaluated on (a) VA 2017–2018 season and (b) NJ 2017–2018 season. The
results show that the coefficient μ has significant influence on the model forecasting performance especially
with large horizons. The optimal value of μ should be chosen independently in different regions. A log y-scale
is used in RMSE and MAPE.

spatial consistency does not mean a better model forecasting performance. In practice, we need to
keep balance between keeping good spatial consistency and maintaining good model performance.

To evaluate the significance of the spatial consistency constraint for model forecasting power,
we compare the forecasting performance of models on real seasonal data with various μ using
RMSE (shown in Figure 21). For VA, the best performance is the model with μ = 0.1. For NJ,
the best performance is the model with μ = 1. Overall, the spatial consistency constraint with
a proper coefficient, which may vary between different regions, helps improve the forecasting
performance.

Non-negative consistency. The experiments are conducted using μ = 0 and λ = {0, 0.001, 0.01,
0.1, 1, 10, 100}. Similarly to the spatial consistency evaluation, we compare the performance of
models with various λ using RMSE (shown in Figure 22). For VA, the best performance is the model
with λ = 1, and the models with the non-negative consistency constraint (λ ≤ 1) outperform the
model without the constraint. For NJ, the best performance is the model with λ = 1. For both VA
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Fig. 22. TDEFSI performance with non-negative consistency constraints of different coefficients λ =
{0, 0.001, 0.01, 0.1, 1, 10, 100}. The performance is evaluated on (a) VA 2017–2018 season; (b) NJ 2017–2018
season. The results show that the coefficient λ has significant influence on the model forecasting perfor-
mance. The optimal value of λ should be chosen independently in different regions. A log y-scale is used in
RMSE.

and NJ, from the figures we observe that the models with λ equal or larger than 10 will have no
predicting power (i.e., they are almost horizontal lines with high RMSE). The possible reason is
that a strong penalty (large λ) may cause the weights of the hidden units to shrink toward zero.
When W,U in Equation (1) become zero the LSTM layer gives a constant output. This will make
the network stop learning and output constant predictions. Overall, the non-negative consistency
constraint with a proper coefficient, which may vary between different regions, helps improve the
forecasting performance.

Implications. Three types of physical consistency were incorporated in our TDEFSI models.
Computational experiments show that these constraints can lead to a better domain consistency as
well as improve the forecasting performance. By incorporating physical consistency, TDEFSI en-
ables theory guided deep learning for epidemic forecasting. Spatial and non-negative consistency
constraints also positively influence the overall performance. However we note that no single pa-
rameter setting works across all scenarios thus context specific tuning is needed.

5.9 Vaccination-based Interventions

When TDEFSI framework uses an agent-based SEIR model to generate a simulated training dataset,
it is straightforward to implement various interventions in the simulations. For example, in our
parameter space P (pE ,pI ,τ ,NI , IV ), IV represents the vaccination-based intervention. We inves-
tigate how IV affects the performance of TDEFSI by generating two synthetic training datasets:
(i) vaccine-case: Generated by simulations with IV (TDEFSI and its variants in previous experiments
of Section 5 are trained on vaccine-case simulated training dataset); and (ii) base-case: Generated
by simulations that share the common settings of pE ,pI ,τ ,NI with vaccine-case except IV = ∅. We
train TDEFSI on the vaccine-case and base-case with the same settings described in Section 5.3, and
denote the trained models as TDEFSI-vac and TDEFSI-base, respectively. Note that here TDEFSI-vac
is the same as TDEFSI in the previous experiments.

Figure 23(a) and Figure 23(b) show the state-level forecasting performance of VA and NJ on
RMSE, MAPE, and PCORR using real-testing dataset. We observe that TDEFSI-vac significantly
outperforms TDEFSI-base for all metrics on both states except that for the MAPE result of VA,
TDEFSI-vac is compatible with TDEFSI-base. In Figure 24, we present the comparison ratio be-
tween two models from the spatial dimension of NJ counties. It is observable that TDEFSI-vac
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Fig. 23. State-level forecasting performance comparison between TDEFSI models trained on the base-case
simulated training dataset (TDEFSI-base) and the vaccine-case simulated training dataset (TDEFSI-vac).
They test on VA, 2017–2018 with a horizon up to 10 weeks ahead. TDEFSI-vac outperforms TDEFSI-base
across three metrics. A log y-scale is used in RMSE and MAPE.

Fig. 24. NJ, 2017–2018 county-level spatial forecasting performance comparison between TDEFSI-vac and
TDEFSI-base for NJ, season 2017–2018. (a) RMSE-ratio; (b) MAPE-ratio; (c) PCORR-ratio. For each county
in NJ, the ratio value of the county is computed using Equations (12), which is the average value across
horizons. A value larger than 1 (red) means TDEFSI-vac outperforms TDEFSI-base, a value equal to 1 (white)
means they both perform equally, and a value smaller than 1 (green) means TDEFSI-base performs better
than TDEFSI-vac. The absolute magnitude of the value denotes the significance of the difference of the two
models’ performance. It is observable that TDEFSI-vac performs better than TDEFSI-base in all counties of
NJ.

performs better than TDEFSI-base in all counties of NJ. The results indicate that vaccination-based
interventions applied in the simulations to generate training datasets can significantly improve the
forecasting performance.

The models learned from the vaccine-case datasets are more generalizable to unseen surveil-
lance data. Our experiments show the significance of vaccination-based interventions applied in
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Fig. 25. NJ state-level mean predicted curve with predictive intervals of (mean ± k ∗ std ), where k =
{0.5, 1, 1.5, 2}. The black circles are ground truths. We can observe that all ground truths are within 2 standard
deviations.

the simulations on the forecasting performance. The proposed framework is extensible for other
realistic interventions, such as school closure or antivirals, to further improve the forecasting
performance.

5.10 Prediction Uncertainty Estimation

In the epidemic forecasting domain, probabilistic forecasting is important for capturing the uncer-
tainty of the disease dynamics and to better support public health decision making. Probabilistic
forecasting with deep learning models is challenging due to the lack of interpretability of such
models. Most works on this are based on Bayesian Neural Networks. Gal et al. [35] in 2016 proved
that using dropout technique is equivalent to Bayesian NN’s and proposed Monte Carlo Dropout
(MC Dropout) to estimate uncertainty in deep learning. The proposed method is computationally
efficient. We implement MC Dropout in TDEFSI and demonstrate estimation of prediction
uncertainty with a case study of state-level forecasting for NJ season 2016–2017. The model
setting is the same as that described in Section 5.3, and the MC number is 20. Figure 25 shows the
curve of mean predictions with predictive intervals of (mean ± k ∗ std ), where k = {0.5, 1, 1.5, 2}.
We can observe that all ground truths are within 2 standard deviations.

6 CONCLUDING REMARKS AND DIRECTIONS FOR FUTURE WORK

We described TDEFSI—a novel epidemic forecasting framework that combines deep learning meth-
ods with high performance computing oriented simulations of epidemic processes over realistic
social contact networks. TDEFSI and its variants use a two-branch LSTM-based neural network
model and are designed to combine within-season and between-season observations. TDEFSI in-
corporates domain knowledge into deep neural network models by considering temporal, spatial,
and non-negative consistency constraints as well as natural constraints imposed by the use of
epidemic simulations.

The models are trained on a region-specific simulated dataset constructed at multiple spatially
fine-grained scales. The trained models can provide high-resolution forecasts using flat-resolution
surveillance data. We carried out extensive computational experiments on NJ and VA, using syn-
thetic as well as state-level real surveillance data. The results show that TDEFSI combined with
epidemic simulations achieve comparable/better performance than the state-of-the-art methods
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for ILI forecasting at the state level. For high-resolution forecasting at the county level, TDEFSI
significantly outperforms the comparison methods. Through sensitivity analysis on spatial and
non-negative consistency constraints, we discuss the influence of these constraints on model per-
formance. A case study of probabilistic forecasting on NJ state shows the model’s ability to provide
prediction uncertainty using MC Dropout technique. Experiments involving more states and more
seasons are desirable to show that the performance comparison of TDEFSI against other methods
is robust, but due to the limitation on the availability of high-resolution data and historical data of
flu seasons we only tested the framework on two states and two seasons. In future work, we plan
to look for more datasets so that the robustness of our observations can be tested.

Future work. A direction for future work is to investigate the use of synthetic data generated
by social, epidemiological, and behavioral models in conjunction with observed data to improve
epidemic forecasts. (i) In this work, we try to reduce the gap between simulated and real world data
distributions by simulating with parameter settings learned from observations so that the gener-
ated epi-curves are realistic. In future work, we plan to further reduce the gap by using synthetic
data based on real-time observations to train the neural networks. (ii) We also plan to explore the
capability of TDEFSI on what-if forecasts. What-if forecasts capture various what-if scenarios due
to expected or unexpected public health interventions or individual-level behavioral reactions as
the epidemic evolves. They provide insights on possible trajectories of the ongoing epidemic under
different assumptions. They can help public health decision making with risk/benefit predictions.
The data-driven methods can only provide passive forecasts, while what-if forecasts are natural
in TDEFSI thanks to the causal model behind it. A possible way to make what-if forecasts with
TDEFSI works as follows: based on the current status of the epidemic, make a few assumptions
about what may happen in the future that will change the epidemic dynamics; implement each
assumption as a set of interventions (e.g., school closure from ew (51) to ew (52)) in the simulations
and generate synthetic epi-curves; re-train the deep neural network with the updated synthetic
curves; and make predictions that describe future dynamics with this particular assumption. Note
that one what-if scenario can be associated with multiple interventions.

A APPENDIX

A.1 Synthetic Social Contact Network

A synthetic population and the corresponding social contact network are used to simulate the
spread of the disease. In our work, we use the synthetic social contact network of Virginia and
New Jersey. Below we briefly describe the methodology used for constructing the synthetic pop-
ulation and the social network.2 Interested readers can find more details about this methodology
in References [6, 8, 14, 30, 64].

To construct the social network, first a statistical representation of each individual in the popu-
lation is built using US Census data. This synthetic population is statistically equivalent to the real
population when aggregated to the census block group level. Individuals in the synthetic popu-
lation are assigned a complete range of demographic attributes as available in the Census [8, 13],
including age, gender, household location, and household income.

Next, a set of activity templates are extracted from American time-use surveys [17] and the
National Household Travel Survey. Each of these activity templates provides a daily sequence of
activities for individuals and the time of day they are performed. Each synthetic household is
matched with one of the survey households, using a decision tree based on demographics such
as the size of the household, number of workers in the household, number of children, and so on.

2The description is similar as the one we described in our previous work [86], since they use the same synthetic dataset.
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Table 5. Surveillance Ratios for Each State in the US

Alabama: 0.0759 Kansas: 0.1093 New York: 0.1204
Alaska: 0.1143 Kentucky: 0.1114 North Carolina: 0.0875
Arizona: 0.0723 Louisiana: 0.0931 North Dakota: 0.1960
Arkansas: 0.0894 Maine: 0.1931 Ohio: 0.1339
California: 0.0628 Maryland: 0.0755 Oklahoma: 0.1039
Colorado: 0.0764 Massachusetts: 0.1380 Oregon: 0.1050
Connecticut: 0.1047 Michigan: 0.1356 Pennsylvania: 0.1299
Delaware: 0.1030 Minnesota: 0.0898 Rhode Island: 0.0932
District of Columbia: 0.1852 Mississippi: 0.0874 South Carolina: 0.0663
Florida: 0.0582 Missouri: 0.1492 South Dakota: 0.1882
Georgia: 0.0701 Montana: 0.1739 Tennessee: 0.0811
Hawaii: 0.0705 Nebraska: 0.1329 Texas: 0.0738
Idaho: 0.1190 Nevada: 0.0643 Utah: 0.0913
Illinois: 0.1066 New Hampshire: 0.1566 Vermont: 0.2111
Indiana: 0.1215 New Jersey: 0.0692 Virginia: 0.0914
Iowa: 0.1420 New Mexico: 0.1258 Washington: 0.0885
Kansas: 0.1093 New York: 0.1204 West Virginia: 0.1684

The synthetic household members are then assigned the activity templates of the matching survey
household members, giving each synthetic individual a daily sequence of activities. For each activ-
ity of each individual, a geographic location is identified based on land-use patterns, transportation
network, and data from commercially available databases such as Dun and BradStreet.

A social network is constructed by connecting individuals simultaneously present at the same
location. The co-location-based social network is dynamic and changes as people visit different
locations and come in contact with individuals at these locations.

A.2 Surveillance Ratio

In our experiments, we scale the ILINet case count to the population case count using a surveillance
ratio. We assume that the ratio between ILI cases captured by CDC ILINet (denoted ILITOTAL) and
ILI cases in the population (ILIPOP) is the same as that between patients of all diseases captured by
CDC ILINet (TOTALPATIENT) and patients of all diseases in the population (PATIENTPOP). We
approximate PATIENTPOP with all doctor visit data from AHRQ [2]. The doctor visit data provides
county-level counts for total hospital visits in a year that is aggregated to state-level counts later.

Note that it is an underestimate. From surveillance ratio = ILITOTAL
ILIPOP = TOTALPATIENT

PATIENTPOP , we can

derive the only unknown ILIPOP. Table 5 presents the surveillance ratios for all the states.

A.3 Disease Parameter Space

Among P, pI ,pE are from literature, IV is derived from historical data, and we assume IV follows
a discrete uniform distribution. The distributions of τ and NI are fitted distributions using KS-test
on collected samples. The samples used to fit a distribution are collected from historical training
seasons. For example, given a state New Jersey, the training data includes 6 seasons from 2010–
2011 to 2015–2016, its neighbors are Delaware, New York, and Pennsylvania. Then we can collect
6 ∗ 4 = 24 samples of ar or NI for NJ. We calibrate τ using Nelder-Mead [65] algorithm based on
each collected pair of (ar ,NI ). For each of ar ,NI ,τ , we obtained 36 data points for VA and 24
for NJ. At the fitting step, normal and uniform distributions are included. We run KS-test (the null
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hypothesis being that the sample is drawn from the reference distribution) to choose a distribution
with the highest significance (p-value). The learned parameter space is shown in Table 1. Note that
each parameter in P follows a marginal distribution.

A.4 Baseline Model Settings

In this section, we elaborate the details of model setting of the baselines. Note that, in the ex-
periments, we choose the final model with the best validation accuracy by grid searching. Unless
explicitly noted, the hyperparameters are set with default values from python libraries.

• Single layer LSTM model (LSTM): It consists of one LSTM layer and one dense layer. The
input is the sequence of state-level ILI incidence and the output is the state-level prediction
of the current week. By grid searching, we set the look back window size to 52 and LSTM
hidden units to 128. The Adam optimizer is used.

• AdapLSTM [82]: This method makes predictions using a simple LSTM model, then adjusts
the predictions by applying impacts of weather factors and spatiotemporal factors. The
LSTM model has the same setting with single layer LSTM model described above. In Ref-
erence [82], the weather features include maximum temperature, minimum temperature,
humidity, and precipitation. However, humidity is not used in our experiments, since it is
not publicly available in the collected weather dataset. The confidences of symbol pairs
(the climatic variable time series and the flu count time series) in our experiment are less
than 0.3, which will lead to arbitrary adjustment for predictions. The neighbors of each
state used for spatiotemporal adjustment factor are geographical adjacent states that are
the same with those used in constructing disease parameter space. For more details please
refer to the original paper [82].

• Simple SARIMA model (SARIMA): We use the Seasonal ARIMA model, denoted as SARIMA
(p,d,q)×(P ,D,Q )m , where p is the order (number of time lags) of the autoregressive model;
d is the degree of differencing (the number of times the data have had past values sub-
tracted); q is the order of the moving-average model; m refers to the number of periods in
each season; and the uppercase P ,D,Q refer to the autoregressive, differencing, and moving
average terms for the seasonal part of the SARIMA model. By grid searching, the selected
model is SARIMA(8, 1, 0) × (5, 0, 0)52. No exogenous variables are used in this model.

• AutoRegression with Google search data (ARGO) [97]: The method uses an autoregression
model utilizing Google search data. We use the publicly available tool from Reference [97].
In our experiment, we set the look back window size to 52 and the training window to
104. In the Google data we collected, all of the top 100 Google correlate terms of VA are flu
related, while only one out of the top 100 Google correlated terms of NJ are flu related. This
may cause ARGO to perform better on VA than on NJ as discussed in Section 5.7.3.

• EpiFast [7]: This method takes the same setting ofpE andpI as shown in Table 1 and searches
for NI ,τ by minimizing the dissimilarity between the predicted and the actual ILI incidence
using the Nelder-Mead algorithm [65].
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