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Notation
Notations and their descriptions used in the paper is shown
in Table 1.

Table 1: Notations and their descriptions

Notation Description
N number of regions
K historical window size of training data
h horizon of a prediction
C number of features

G(V, E , T ) dynamic graph of N regions with T
time points

At ∈ RN×N attention matrix
Ct ∈ RN×C matrix of node features for N regions
Qt ∈ RN×4 matrix of causal features for N regions
Pt ∈ RN×3 matrix of causal parameters for N re-

gions
Hc

t ,H
f
t ,Ht, H̃t matrices of hidden states of causal en-

coding, feature encoding, spatial en-
coding, and temporal encoding

Fc, Ff , F, Fs hidden dimensions
Ŷ, Ŷc matrix of predictions for N regions
Y,Yc matrix of true values for N regions

Pseudo Code of the Proposed Framework
The pseudocode of the model training process is described
in Algorithm 1.

Experimental Settings
In this section, we will provide additional information for
reproducing experiments.

Data Sources
Disease dynamics datasets were collected via the JHU
COVID-19 surveillance dashboard1. Geographical adja-
cency datasets: Country adjacency and US state adjacency
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1Source:https://github.com/CSSEGISandData/COVID-19

Algorithm 1: CausalGNN training
Input: G(V, E , T ); Historical window size K; forecast

horizon h.
Output: Model parameters Θ

1 b← a batch training sample
2 for each instance ∈ b do
3 QT−K+1 ← Qg

T−K+1 . Initializing
causal features with real data

4 for t in T −K + 1 . . . T do
5 Hc

t ← CE(Qt) . Causal encoding

6 Hf
t ← FE(Ct) . Feature encoding

7 H̃t ← TE(Hf
t ,H

c
t ,Ht−1) . Temporal

embedding, HT−K ← Hf
T−K+1

8 Ht ← AGCN(H̃t,At) . Spatial
embedding

9 Pt ← CD(H̃t) . Causal decoding

10 Ŷc
t+1,Qt+1 ← SIRD(Qt,Pt) . Causal
simulating

11 for t in T + 1 . . . T + h− 1 do
12 Ŷc

t+1,Qt+1 ← SIRD(Qt,PT ) . Causal
simulating for another h− 1 steps

13 Hc
T+h ← CE(QT+h) . Causal encoding

14 Ŷ ← Output(HT ,H
c
T+h) . Predicting

15 Ŷ c ← [Ŷ c
T−K+2, . . . , Ŷ

c
T+h]

16 Θ← BackProp
(
LossFunc(Y, Ŷ,Yc, Ŷc,Θ

)
)

. Adam opt

matrices are manually collected and cleaned. US county ad-
jacency is downloaded from the US Census Bureau2. Popu-
lation datasets: The country population (2020) data is col-
lected from the worldometers website 3. The US state and
county population (2019) datasets are downloaded from the
US Census Bureau4.

2Source:https://www2.census.gov/geo/docs/reference/
county adjacency.txt

3Source:https://www.worldometers.info/world-population/
population-by-country/

4Source:https://www.census.gov/data/datasets/time-
series/demo/popest/2010s-counties-total.html



Metrics
The metrics used to evaluate the forecasting performance
are: mean absolute error (MAE) amd mean absolute percent-
age error (MAPE). Assuming we have n testing data points
and n = N×m means N regions by m days. We denote the
true value and prediction for the ith testing data point to be
zi and ẑi. We do not distinguish regions in calculating MAE
and MAPE.
• The Mean absolute error (MAE) is a measure of abso-

lute difference between two variables:

MAE =
1

n

n∑
i=1

|zi − ẑi| (1)

MAE ranges in [0,+∞] and smaller values are better.
• The Mean absolute percentage error (MAPE) mea-

sures the size of the error between two variables in per-
centage terms:

MAPE = (
1

n

n∑
i=1

|zi − ẑi
zi + 1

|) ∗ 100 (2)

where the denominator is smoothed by 1 to avoid zero val-
ues. MAE ranges in [0,+∞] and smaller values are better.

Setting of Baselines
Unless specified in this section, in our experiment, we use
the same parameter settings as those described in the original
paper.
• SIR is a single-patched SIR compartmental model. We

calibrate model parameters based on surveillance data
(daily new confirmed cases) for each region. Predictions
are made by persisting the current parameter values to the
future time points and run simulations.

• PatchSEIR is a network-based SEIR compartmental
model for influenza forecasting. We use a gravity model
to generate a network flow of mobility. We use the same
rationale with SIR method for calibrating and predicting.

• Autoregressive (AR) uses observations from previous
time steps as the input to a regression equation to predict
the value at the next time step. We adopt an AR model of
order 28.

• Autoregressive Moving Average (ARMA) is used to de-
scribe weakly stationary stochastic time series in terms of
two polynomials for the autoregression (AR) and the mov-
ing average (MA). We set AR order to 28 and MA order
to 2.

• Recurrent Neural Network (RNN) is a one layer RNN
model with hidden state dimension as 32.

• Gated Recurrent Unit (GRU) is a one layer GRU model
with hidden state dimension as 32.

• Long-Short Term Memory (LSTM) is a one layer
LSTM model with hidden state dimension as 32.

• DCRNN combines graph convolution networks with re-
current neural networks in an encoder-decoder manner for
traffic forecasting.

• CNNRNN-Res combines CNN, RNN, and residual links
in one framework for influenza forecasting. It employs
RNN to encode temporal information and CNN to fuse in-
formation from data of different regions. We set the resid-
ual window size as 3 and all the other parameters are set
as the same as the original paper.

• LSTNet uses CNN and RNN to extract short-term lo-
cal dependency patterns among variables and to discover
long-term patterns for time series trends in traffic forecast-
ing.

• STGCN integrates graph convolution and gated temporal
convolution through spatio-temporal convolutional blocks
for traffic forecasting.

• Cola-GNN uses location-aware attention graph neural
networks to combine graph structures and time series fea-
tures in a dynamic propagation process.

• STAN integrates disease dynamics theory into graph neu-
ral network training for COVID-19 forecasting. Partial
data such as ICU visits are not available for our selected
regions thus has been omitted from the model implemen-
tation.

Note that SIR, PatchSEIR, CNNRNN-Res, Cola-GNN,
and STAN are proposed for epidemic forecasting while
DCRNN, LSTNet, and STGCN are proposed for traffic fore-
casting.

More Experimental Results
In this section, we will present further experimental results
including ablation study in terms of MAPE, sensitivity anal-
ysis on major hyperparameters, fairness analysis of the pro-
posed model across regions, and more examples and detailed
analysis on epidemiological context.

Ablation Study (MAPE)
We present the comparison of forecasting performance in
terms of MAPE for CausalGNN, CausalGNN w/o csl,
CausalGNN w/o grf, and CausalGNN w/o att. The obser-
vations are similar with MAE (described in the main paper)
thus are omitted here for the sake of brevity.

(a) Globe (b) US-State (c) US-County

Figure 1: Ablation analysis on major components of the pro-
posed model (MAPE).

Sensitivity Analysis
In this section, we show sensitivity analysis on some of the
hyperparameters of CausalGNN: historical window size K
(Figure 2a), hidden dimension F (i.e., Fc = Ff = 2Fs =
F ) (Figure 2b), causal model (Figure 2c), and TE mod-
ule (Figure 2d). Except the varying hyperparameters, all the



other settings are the same with parameter settings described
in the main paper. We report MAE performance on the US-
State dataset with horizon=28 in Figure 2. The blue squares
correspond to the same results from the main experiment.
The MAPE performance shows similar observations thus are
omitted for the sake of brevity.

Major observations and discussion: 1) Figure 2a shows
that the model performance gets improved when K in-
creases from 7 to 14, however, there is no obvious improve-
ment after K = 14. We choose 28 in the main experiment as
it equals to the historical window size K. 2) Figure 2b shows
that the performance gets improved as F increases. We ob-
serve no performance improvement by increasing F value
from 32 to 64. We choose 32 in the main experiment to op-
timize the model performance. 3) The results in Figure 2c
show that there is no significant difference between the per-
formance of using SIRD model and SIR model. We choose
SIRD model since it complies with the fact that COVID-
19 virus can cause deaths. For future use of our framework,
with the availability of data, we recommend to use a model
that is as realistic as possible to mitigate the forecasting er-
ror imported by an assumption bias. 4) Figure 2d shows that
the model performance does not vary too much in terms
of TE module type. We choose the current TE module for
its smaller parameter size compared with RNN, GRU, and
LSTM.

(a) Window size (b) Hidden dimension

(c) Causal model (d) TE module

Figure 2: Sensitivity analysis on (a) historical window size
K: 7, 14, 28, 35; (b) hidden dimension F : 8, 16, 32, 64; (c)
causal model: SIR, SIRD; (d) TE module: TE, RNN, GRU,
LSTM.

Fairness Analysis
Besides predicting the spread of an infectious disease, AI
systems can be used for other important tasks, such as pre-
dicting the presence and severity of a medical condition or
matching people to jobs. Any unfairness in such systems can
have a far-reaching impact. Therefore, it is critical to work
towards systems that are fair and inclusive for all. There is
no standard method in the community to evaluate a system’s
fairness. In this section, we perform fairness analysis on our
model by evaluating its performance across regions with a

broad range of demographic distributions and other variabil-
ity. The administrative divisions, e.g., US states or US coun-
ties, which are recognized divisions of a country, are valid
regions to perform fairness analysis. We will evaluate the
CausalGNN performance across US counties.

By the definition of MAE and MAPE in Equation 1 and 2,
we know that MAE is scale dependant while MAPE is scale
independent. MAPE can be used to compare a model on dif-
ferent regions. However, it divides the absolute error of the
model by the actual data values. If there are data values close
to 0, which is true for daily new confirmed cases of many
counties during testing days (i.e., from March 21, 2021, to
April 23, 2021), dividing by those very small values greatly
inflates the value of MAPE. To remove the bias imported
by MAPE, we computed Pearson correlation (PCORR) be-
tween predicted curves and the ground truth curves for every
counties:
• Pearson correlation (PCORR) is calculated per region:

PCORR =

∑m
i=1(ẑi − ¯̂z)(zi − z̄)√∑m

i=1(ẑi − ¯̂z)2
√∑m

i=1(zi − z̄)2
(3)

PCORR ranges in [−1,+1] and larger values are better.
PCORR metric is scale independent thus can be used to
compare a model performance across different regions.
Figure 3a shows the choropleth plot with counties shaded

according to their PCORR performance values for 1351
counties. The colorbar ranges from -1 to 1 while the darker
color represents the larger PCORR values and the grey color
shows invalid counties in our experiment. In Figure 3b we
show a corresponding histogram over PCORR values. We
observe that the model performs similarly across counties
and there is no discernible pattern in the forecast distribu-
tion. This indicates that our model can perform fairly well in
all counties.

(a) US map (b) Histogram

Figure 3: CausalGNN performance distribution over US
counties. (a) The choropleth plot with counties in PCORR
performance. (b) The histogram of PCORR values.

Epidemiological Context in More Examples
The aim of the proposed framework is to provide not only
correct inferences but also the mechanistic understanding of
the learned deep learning model as well as the model fore-
casts. To illustrate how the causal module can help in im-
proving the model performance, we show three examples in
the main paper. In this section, we show more examples by



comparing the 7 days ahead forecasts of confirmed cases on
April 18, 2021 by CausalGNN (blue dots) and CausalGNN
w/o csl (red crosses) for 50 US states in Figure 4. In each
subplot, the black curve represents the ground truth curve
while the orange curve represents the generated causal fore-
casts by the causal module in CausalGNN. Both solid lines
and dots are smoothed by Savitzky–Golay filter5 with win-
dow size 7 and polynomial order 1 to remove biases in daily
reporting of cases. The shaded area is the input window.

Major observations and discussion: Similar with the ob-
servations in the main paper, we can observe that the causal
module can generate meaningful curves (orange curves)
compared with the ground truth curves (black curves) in
most states. This indicates that CausalGNN can reveal
mechanistic causal process by producing meaningful causal
parameters to provide meaningful epidemiological context
for GNN learning in our experiment settings. We can also
observe that CausalGNN makes a better forecast (blue dots)
than CausalGNN w/o csl (red crosses) for most states (i.e.,
the blue dots are closer to the black curves than the red
crosses on the forecasting day). This means that the causal
module proposed in our model can help in improving the
model performance generally.

NOTE: The examples we present here do not mean that
our model can learn meaningful parameters for all forecast-
ing days in all regions, but this is a good start of building ex-
plainable deep learning models for epidemic forecasting by
the proposed model. More systematic and rigorous experi-
mental analysis is needed in the future. By using the inferred
causal parameters, we can run SIRD model independently
to produce multiple forecasts such as death count. Further-
more, our model enables counterfactual forecasting by in-
troducing different circumstance such as vaccine schedule
to the simulations in the causal module. This would be our
future work.

5https://en.wikipedia.org/wiki/Savitzky\%E2\%80\
%93Golay filter



Figure 4: US state level forecasts of COVID-19 new confirmed cases with horizon 7 on April 18, 2021 by CausalGNN (blue
dots) and CausalGNN w/o csl (red crosses). The black curves represent the ground truth while the orange curves represent the
predicted curves of generated causal forecasts by the causal module in CausalGNN. Both solid lines and dots are smoothed
values. The shaded area is the input window.


