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Abstract

Infectious disease forecasting has been a key focus in the re-
cent past owing to the COVID-19 pandemic and has proved
to be an important tool in controlling the pandemic. With
the advent of reliable spatiotemporal data, graph neural net-
work models have been able to successfully model the inter-
relation between the cross-region signals to produce quality
forecasts, but like most deep-learning models they do not
explicitly incorporate the underlying causal mechanisms. In
this work, we employ a causal mechanistic model to guide
the learning of the graph embeddings and propose a novel
learning framework – Causal-based Graph Neural Network
(CausalGNN) that learns spatiotemporal embedding in a la-
tent space where graph input features and epidemiological
context are combined via a mutually learning mechanism
using graph-based non-linear transformations. We design an
attention-based dynamic GNN module to capture spatial and
temporal disease dynamics. A causal module is added to
the framework to provide epidemiological context for node
embedding via ordinary differential equations. Extensive ex-
periments on forecasting daily new cases of COVID-19 at
global, US state, and US county levels show that the proposed
method outperforms a broad range of baselines. The learned
model which incorporates epidemiological context organizes
the embedding in an efficient way by keeping the parameter
size small leading to robust and accurate forecasting perfor-
mance across various datasets.

Introduction
Epidemic forecasting is crucial for helping inform policy-
makers on how to develop effective interventions and mar-
shal limited healthcare resources. In general, modeling and
forecasting the spatial and temporal evolution of infectious
diseases has been an area of active research over the past
couple of decades. Existing methodologies for epidemic
forecasting can be broadly categorized into: 1) Mechanis-
tic causal methods, including single patch/network-based
compartmental models and agent-based models, employ
a disease transmission model (e.g. Susceptible-Infectious-
Recovered (SIR)) to incorporate the causation of disease
spread in a population and to capture the underlying dynam-
ics of disease transmission. Such models have been used
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extensively to study diseases in significant detail, includ-
ing Ebola (Venkatramanan et al. 2018), influenza (Nsoe-
sie, Mararthe, and Brownstein 2013), and more recently
COVID-19 (Hoertel et al. 2020; Anastassopoulou et al.
2020; Giordano et al. 2020; Yamana, Pei, and Shaman
2020). Forecasting is made by calibrating disease parame-
ters using simulation optimization to match observations and
then by projecting forward using the most recent calibrated
values for future predictions. 2) Statistical time series meth-
ods such as autoregressive models (e.g., AR, ARMA, and
ARIMA) and Kalman filtering have been used for dengue
and influenza forecasting in (Yang, Santillana, and Kou
2015; Wang et al. 2015; Kandula, Hsu, and Shaman 2017;
Rangarajan, Mody, and Marathe 2019; Shaman and Kar-
speck 2012), and further used for COVID-19 forecasting in
(Harvey and Kattuman 2020; Petropoulos and Makridakis
2020; Ribeiro et al. 2020). 3) Deep learning methods have
gained increasing prominence in epidemic forecasting, such
as Long-Short Term Memory (LSTM) for influenza fore-
casting (Volkova et al. 2017; Venna et al. 2019; Wu et al.
2018) and COVID-19 forecasting (Chimmula and Zhang
2020; Arora, Kumar, and Panigrahi 2020), and graph neu-
ral networks (GNNs) for spatiotemporal epidemic forecast-
ing (Deng et al. 2020; Kapoor et al. 2020; Wang et al. 2020;
Ramchandani, Fan, and Mostafavi 2020; Gao et al. 2021).
These methods assume statistical properties about the data
or employ complex spatiotemporal methodologies to learn
patterns in historical data and leverage those patterns for
forecasting.

In the context of new emerging epidemics, such as the
COVID-19 pandemic, the forecasting problem has been par-
ticularly complicated as the surveillance data 1) is sparse
due to the lack of historical data; 2) noisy due to report-
ing bias, testing prevalence etc.; 3) is a resultant of rapidly
co-evolving dynamics of individual behavioral adaptations,
government policies and disease spread. Given the data chal-
lenges, a plethora of models have been explored. One no-
table forecasting effort within the US is the COVID-19 Fore-
cast Hub, a consortium of over 80 modeling teams initiated
by the Centers for Disease Control and Prevention (CDC)
in collaboration with academic partners.This effort has been
aimed at real-time forecasting wherein multiple classes of
statistical and mechanistic models have been employed by
individual groups(Ray et al. 2020).Through these efforts and



existing published works, we have observed several chal-
lenges to the forecasting problem:
• The network-based compartmental models (Balcan et al.

2009; Venkatramanan et al. 2017), compared to single-
patched models, explicitly account for the connectivity
among patches. Thus, it is more promising in capturing
the relation between the model parameters and spatiotem-
poral data. However, calibrating such models, especially
at the high geographical resolution, is challenging given
the need to capture time-varying inter- and intra-regional
effects. For example, for the United States with 3000+
counties and W weeks of data, there are technically over
3000 × W entries in the spatiotemporal transmissibility
matrix to be calibrated, making traditional Bayesian tech-
niques computationally intensive and susceptible to over-
fitting due to the limited training data size.

• Deep learning models especially GNN-based models usu-
ally require a sufficiently large quality dataset to train the
large number of model parameters to avoid overfitting. Ex-
isting spatiotemporal forecasting models such as for traf-
fic forecasting (Li et al. 2017; Lai et al. 2018; Yu, Yin,
and Zhu 2017; Wu et al. 2019, 2020; Bai et al. 2020),
tend to overfit in epidemic data because epidemic data is
sparser and noisier than traffic data. Existing spatiotem-
poral epidemic forecasting models (Wu et al. 2018; Deng
et al. 2020) whose parameter size increases with graph
node size failed to forecast over a large number of regions.
Reducing the complexity of such models is crucial for ac-
curate forecasting.

• Prior works in physics and biology (Karpatne et al.
2017) have shown the evidence that incorporating do-
main knowledge into data-driven models can help improve
spatiotemporal forecasting algorithms. However, for epi-
demic forecasting, apart from a few models (Wu et al.
2018; Deng et al. 2020), existing deep learning models
rarely consider explicit incorporation of epidemiological
context1. Such models are prone to be overfitting leading
to failures in long-term forecasting, especially when the
data is noisy and sparse such as COVID-19 surveillance
data at the US county level. Recent work (Gao et al. 2021)
leverages causal features generated by the ordinary differ-
ential equations (ODE) to regularize model predictions for
GNN learning but has not considered these features in the
graph embedding process.
To address the above challenges, we propose Causal-

based Graph Neural Network (CausalGNN). The Causal-
GNN attempts to capture the spatial and temporal dynamics
via a well designed GNN module and uses a causal module
to mutually provide and embed causal features to get epi-
demiological context. Causal constraints are also added to
further improve model forecasting performance. The major
contributions are summarized below:
• We propose a novel spatiotemporal learning framework

that learns a latent space to combine the spatiotempo-
1In our paper, epidemiological context refers to all the parame-

ters and features corresponding to the disease models, such as S,I,R
counts and disease specific parameters, which can provide context
specific information for model learning.

ral and causal embeddings using graph-based non-linear
transformations. We present a jointly learning process for
incorporating epidemiological context in GNN learning.

• We design an attention-based dynamic GNN module to
embed spatial and temporal signals from disease dynam-
ics. The parameter size in our design is agnostic to the
number of regions thus leading to a robust forecasting
performance on datasets of varying region numbers.

• We incorporate a causal module of single-patched com-
partmental models into the framework to provide epi-
demiological context. Compared to traditional network-
based compartmental models, in our framework, the
patches are connected via a learned GNN. The calibra-
tion is done through GNN training, which is computa-
tionally efficient. The causal outputs are embedded as
graph node features and used to regularize GNN fore-
casts for causal-based forecasting, leading to better fore-
casting performance.

• In order to allow for interaction between the causal and
GNN modules, we design a causal encoder to encode
causal features as node embedding to propagate over the
graph and a causal decoder to infer mechanistic model
parameters from latent space at each time step. To the
best of our knowledge, we are the first to propose this it-
erative feedback mechanism that benefits from the learn-
ing in both modules.

• We evaluate the proposed framework for forecasting
daily new confirmed cases of COVID-19 at global, US
state, and US county levels. Our model outperforms a
broad range of baselines with up to 7% improvement of
performance. Through an ablation study, we demonstrate
the effectiveness of causal module in improving model
performance.

Methods
Problem Formulation
We assume N regions in total and define a dynamic graph on
the N regions as G(V, E , T ), where V is the set of N nodes,
E ⊆ V × V is the set of edges, and T is the set of T time
points. At each time step t, the graph G is associated with a
feature matrix Ct ∈ RN×C where C is the feature number
and the graph nodes are connected via an adjacency matrix
At ∈ RN×N . Given a graph G and its historical K ≤ T
steps of feature and adjacency matrices, the objective is to
predict an epidemiological target at future time T + h for
N regions where h denotes the horizon time. The important
notations are described in Appendix Table 1.

Framework
The proposed framework (shown in Figure 1) consists of
two major modules: 1) an attention-based dynamic GNN
(ADGNN) module to capture the spatial and temporal dis-
ease dynamics via graph-based neural networks; 2) a causal
module to provide epidemiological context for GNN learn-
ing via ordinary differential equations. The working of the
model is as follows (the left part of Figure 1): at each time



Figure 1: Framework of CausalGNN which consists of a causal module and an attention-based dynamic GNN module.

step t, the graph G is embedded via nonlinear transfor-
mations including feature encoding (FE), causal encoding
(CE), dynamic graph encoding (AGCN), temporal encoding
(TE), causal decoding (CD), and susceptible(S)-infected(I)-
recovered(R)-deceased(D) (SIRD) computation. In causal
module, we run a single-patched SIRD model for each re-
gion. In ADGNN module, the causal feature matrix Qt is
encoded as a causal hidden matrix Hc

t via the CE layer.
The input feature matrix Ct is encoded as a hidden ma-
trix Hf

t via the FE layer. The current TE layer combines
Hf

t ,H
c
t ,Ht−1 to generate the temporal hidden matrix H̃t

which is then fed into the CD layer to infer causal parame-
ters Pt and fed into the AGCN layer to generate the spatial
hidden matrix Ht (HT−K = Hf

T−K+1) for the next round
of computation. Qt+1 (QT−K+1 is given as the input) is up-
dated via Equation 1 from Qt and Pt. We save Qt+1 for the
next computation This iteration is repeated by K times. At
time T + 1, we run SIRD computation for h − 1 steps fur-
ther with the most recent disease model parameters PT to
get causal features QT+h which is then fed into a CE layer.
The hidden matrices from the last AGCN layer and the last
CE layer are combined and fed into an output layer to get
the final prediction. The pseudocode of the model training
process is described in Appendix. We will elaborate details
of each step in the following sections.

Causal Modeling We import epidemiological context by
incorporating causal-based differential equations into a deep
learning framework. In this paper, we focus on COVID-
19 forecasting. Based on the availability of surveillance
data (i.e., daily confirmed, death, and recovered counts),
we choose a single-patched compartmental SIRD model
(Loli Piccolomini and Zama 2020) to simulate the COVID-
19 spread in each region. Other models such as SIR can also
work. We discuss this in Appendix via sensitivity analysis.
Consider a population of Ni individuals in patch i (i.e., re-
gion i), each of whom can be in one of the following states:
S, I, R, D. Compartmental models operate under a homoge-
neous mixing assumption, i.e., every individual can directly
infect any other individual. We assume that individuals who
become recovered do not get infected again. The dynamics
of epidemic spread in patch i at time t are described by the
following equations:

∆Si(t+ 1) = −βi(t)Si(t)
Ii(t)

Ni

∆Ii(t+ 1) = βi(t)Si(t)
Ii(t)

Ni
− γi(t)Ii(t)− ρi(t)Ii(t)

∆Ri(t+ 1) = γi(t)Ii(t)

∆Di(t+ 1) = ρi(t)Ii(t)
(1)

where qi,t : Si(t), Ii(t), Ri(t), Di(t) denote the cumula-
tive number of individuals in each of the states and Si(t) +
Ii(t) +Ri(t) +Di(t) = Ni; pi,t : βi(t), γi(t), ρi(t) denote
the transmissibility, the recovery rate, and mortality rate, re-
spectively; ∆ means the newly added number of individuals
in each state. In our framework, let Qt = (qi,t) ∈ RN×4

denote the causal feature matrix of N regions at time t, then
Qt+1 is updated as Qt + ∆Qt+1 where the initial values
of QT−K+1 are given as the input; Pt = (pi,t) ∈ RN×3

denotes the causal parameter matrix of N regions at time t
which is inferred by a neural network.

Causal Encoding A causal encoder (CE) is designed to
encode causal features as node embedding. At time t, it
works as:

Hc
t = tanh

(
QtW

(t)
e + b(t)

e

)
∈ RN×Fc , (2)

where W
(t)
e ∈ R4×Fc and b

(t)
e ∈ RFc are model parame-

ters.

Feature Encoding Let Hf
t ∈ RN×Ff represent the matrix

of hidden states of node features Ct for N nodes by a feature
encoder (FE):

Hf
t = σ

(
CtW

(t)
f + b

(t)
f

)
∈ RN×Ff , (3)

where W
(t)
f ∈ RC×Ff , b(t)

f ∈ RFf are model parameters
and σ is sigmoid activation function.

Dynamic Graph Encoding We leverage GCN (Kipf and
Welling 2017) to generate node embedding based on lo-
cal network neighborhoods through message passing. The
neighborhoods are defined using an attention matrix. A tra-
ditional GCN model consists of multiple layers for a single
graph convolution. In our problem, the node features and
graph structure vary across time, hence we implemented a
dynamic attention-based GCN (AGCN) that an AGCN layer
corresponds to a time step to learn spatial features. The num-
ber of AGCN layers is the number of time points in the input
sequence K and they share a common parameter set. This



AGCN architecture allows our model to recurrently propa-
gate forward the spatial and temporal features with a small
parameter size.

Let Ht ∈ RN×F denotes the matrix of hidden states from
the AGCN layer at time t, which maps from H̃t as:

Ht = g
(
AtH̃tW

(t) + b(t)
)
∈ RN×F , (4)

where W(t) ∈ RF×F , b(t) ∈ RF are model parameters. At

is an attention matrix which is defined below. H̃t ∈ RN×F

is the output from the temporal encoder (TE) layer (will
be described in the following section). g is rectified linear
units (ReLU) (Nair and Hinton 2010). The spatial embed-
ding HT−K = Hf

T−K+1.
In real world scenarios, the disease dynamics change and

co-evolve at each time step thus the traditional geographi-
cal adjacency matrix failed to reveal the true connectivity.
Recent works (Kapoor et al. 2020; Wang et al. 2020) use
aggregate mobility data to understand COVID-19 dynam-
ics. However, they usually require adequate data sources to
achieve decent performance in epidemic forecasting which
are usually not available for public usages. Furthermore, as
mentioned in (Wang et al. 2020), these data may not be rep-
resentative of the population as whole, and their represen-
tativeness may vary by region. We want the model to learn
an adaptive relationship between two nodes. Thus, we de-
fine an asymmetric attention matrix to reflect the dynamic
connectivity among regions at each time step, denoted as
At = (aij,t) ∈ RN×N where aij,t represents the impact of
node j on node i. It is computed from H̃t as:

aij,t = vT g(Wschi,t +Wtghj,t + bs) + bs ∈ R, (5)

where hi,t,hj,t ∈ RF are the transpose of the ith and jth
rows in H̃t; Wsc,Wtg ∈ RFs×F , bs ∈ RFs , and bs ∈ R
are model parameters; g is ReLU that is applied element-
wise. We use softmax function to normalize each row in At.

Temporal Encoding Inspired by recurrent neural net-
works, to consider temporal features in the graph, at each
time step, we employ a temporal encoder (TE) layer to re-
encode the hidden representatives Hf

t ,H
c
t ,Ht−1 from FE

and CE at the current time t, and AGCN at the previous time
t− 1. H̃t in Equation 4 is computed as:

Ḣf
t = Hf

t W
(t)
a + b(t)

a ,

Ḣc
t = Hc

tW
(t)
b + b

(t)
b ,

Ḣt−1 = Ht−1W
(t)
c + b(t)

c ,

H̃t = tanh
([
Ḣf

t ∥Ḣc
t∥Ḣt−1

])
∈ RN×F ,

(6)

where W
(t)
a ∈ RFf×a, W(t)

b ∈ RFc×b, W(t)
c ∈ RF×c,

b
(t)
a ∈ Ra, b(t)

b ∈ Rb, and b
(t)
c ∈ Rc are model parameters,

and a + b + c = F . ∥ represents concatenate operation.
The TE module can be replaced by existing RNN modules
such as RNN, GRU, or LSTM. This will be discussed in
sensitivity analysis in Appendix.

Causal Decoding The disease model parameter matrix Pt

is inferred dynamically from H̃t via a causal decoder (DE):

Pt = σ
(
H̃tW

(t)
d + b

(t)
d

)
∈ RN×3, (7)

where W
(t)
d ∈ RF×3 and b

(t)
d ∈ R3 are model parameters

and σ is the sigmoid activation function.

Output Layer As described in the framework overview,
the causal parameters PT are used to run the SIRD model
h− 1 steps further to generate causal predictions QT+h and
will then be fed into a CE layer to generate Hc

T+h. We con-
catenate Hc

T+h and the output of the last AGCN layer HT

and feed them to an output layer for final prediction:

Ŷ = ϕ
([

HT ∥Hc
T+h

]
Wo + bo

)
∈ RN , (8)

where Wo ∈ R(Fc+F ), bo ∈ R are model parameters, ϕ is
an identity function, and Ŷ denotes the predicted target for
N regions at time T + h.

Optimization
We consider causal loss together with ADGNN prediction
loss in the loss function and then optimize a ℓ1-norm loss
via gradient descent:

L(Θ) = ∥Y − Ŷ∥+
T+h∑

t=T−K+2

∥Yc
t − Ŷc

t∥, (9)

where Ŷc
t denotes the causal prediction of the target from

SIRD simulations for N regions at time t; Y and Yc repre-
sent the corresponding ground truth values. We do not distin-
guish regions in calculating loss. In our framework, given an
epidemiological target, we have two predictions from causal
module and ADGNN module respectively. We use the pre-
diction from the ADGNN module as our final prediction as it
embeds hidden information from both modules via the out-
put layer.

Model Complexity
The number of parameters of the proposed model is O(F ×
(F+Fs+c)+Fc×b+Ff×(C+a)). It is agnostic to the num-
ber of regions in the dataset. In our setting, C,F, Fc, Ff , Fs

are limited to small numbers. Thus, our model can capture
spatiotemporal patterns of disease transmissions in an effi-
cient way. We will provide more detailed analysis in the ex-
periment section.

Experiments
Data We use three kinds of data for our experiments.
Their data sources are elaborated in Appendix. COVID-19
datasets: It contains daily cumulative confirmed, death, and
recovered counts at global, US state and county levels, as
well as regions’ latitude and longitude, from May 3, 2020
to April 23, 2021. We select countries with population size
of more than 8.7 million and US counties with more than
3000 confirmed cases by March 20, 2021 to ensure the data
source accuracy. Finally, we include 93 countries, 52 states,



and 1351 counties. Their statistics are shown in Table 1. Ge-
ographical adjacency datasets: It contains country adja-
cency, US state adjacency, and US county adjacency infor-
mation. Population datasets: It contains country population
(2020), US state and county population (2019) information.
It is used to calculate S(T −K + 1).

Table 1: Dataset statistics: min, max, mean, and standard de-
viation (std) of patient counts; dataset size means number of
locations multiplied by # of days.

Dataset Size Min Max Mean std
Globe 93×355 0 823225 3988 15381
US-State 52×355 0 62168 1670 3192
US-County 1351×355 0 34497 59 238

Metrics The metrics used to evaluate the forecasting per-
formance are: mean absolute error (MAE) which is a mea-
sure of absolute difference between two variables, and mean
absolute percentage error (MAPE) which measures the size
of the error between two variables in percentage terms. Both
MAE and MAPE range in [0,+∞] and smaller values are
better. The detailed definition and calculation equations are
shown in Appendix Equation (1) and (2).

Baselines To serve as baselines, we implemented a broad
range of classic and state-of-the-art forecasting models. A
detailed description is shown in Appendix.
• Mechanistic causal models: SIR is a single patch SIR

compartmental model. PatchSEIR (Venkatramanan et al.
2017) is a network-based SEIR compartmental model for
infectious disease forecasting.

• Statistical models: Autoregressive (AR) and Autoregres-
sive Moving Average (ARMA) (Contreras et al. 2003).

• Classic deep learning models: Recurrent Neural Net-
work (RNN) (Werbos 1990), Gated Recurrent Unit
(GRU) (Cho et al. 2014), and Long-Short Term Mem-
ory (LSTM) (Hochreiter and Schmidhuber 1997).

• Spatio-temporal deep learning models: DCRNN (Li et al.
2017), CNNRNN-Res (Wu et al. 2018), and LSTNet (Lai
et al. 2018). They combine convolutional neural networks
(CNNs) and RNNs to extract spatial and temporal patterns
for learning time series trends.

• Graph-based models: STGCN (Yu, Yin, and Zhu 2017),
Cola-GNN (Deng et al. 2020), and STAN (Gao et al.
2021). These models use GNNs to combine graph struc-
tures and time series features to capture a dynamic propa-
gation process.

Settings and Implementation Details In the graph G,
each node’s features include dynamic features (i.e., daily
new-confirmed cases, recovered cases, and deaths) and static
features (i.e., population density, latitude, and longitude). In
our model, the hidden dimensions Fc,Ff ,F are set as 32,
Fs is set as 16 (F2 ), and a = 12, b = 10, c = 10 in Equa-
tion 6. All the parameters are initialized with Glorot initial-
ization. We set batch size as 32, epoch number as 1000.
We use Adam optimizer with default settings, and early

Figure 2: Performance of MAE and MAPE computed across
all regions at the Global level across various forecast days.

(a) Globe (b) US-State (c) US-County

Figure 3: Ablation analysis on major components of the pro-
posed model.

stopping with patience of 100 epochs for all model train-
ing. For all models, the historical window K = 28. Un-
less otherwise specified, all baselines have parameters set in
accordance with the original paper. The collected COVID-
19 datasets are split into training-validation datasets (from
May 3, 2020, to March 20, 2021) and testing datasets (from
March 21, 2021, to April 23, 2021). For each targeted data
point in a testing dataset, we make 7, 14, 21, and 28 days
ahead forecasting of the data point. All results are an aver-
age of 5 randomized trials. The random seeds for reproduc-
ing the results are 42, 52, 62, 72, and 82. We show experi-
ment results with their means and 95% confidence intervals.
All programs are implemented using Python 3.7.4 and Py-
Torch 1.4.0 with CUDA 10.1 in a Simple Linux Utility for
Resource Management (SLURM) system with K80, P100,
V100, and RTX2080 NVIDIA GPU devices that serve in
random.

Forecasting Performance We evaluate our method and
all baselines on forecasting COVID-19 daily new confirmed
case count at global, US state, and US county levels. Table 2
shows the model performance in terms of MAE and MAPE.

We observe that CausalGNN performs consistently better
than the baselines across multiple scales and with increas-
ing horizons. Compared among spatiotemporal forecast-
ing models, epidemic forecasting models (e.g., Cola-GNN,
STAN, and CausalGNN) outperform models proposed for
traffic forecasting (e.g., DCRNN, LSTNet, and STGCN). A
possible reason is that data sampling for epidemic data is dif-
ferent with traffic data. For instance, traffic sensors transmit
data at 5-minute intervals while COVID-19 data collection
shows a larger granularity (i.e., days) with a delay. Traffic
forecasting models tend to overfit in epidemic data.

CausalGNN performs better than STAN in most cases be-
cause it not only adds a causal-based regularizer in the loss
function (like STAN did) but also mutually encodes causal
features into graph learning, which provides epidemiolog-



Table 2: MAE and MAPE performance of different methods on the three datasets with horizon= 7, 14, 21, 28. Mean and 95%
confidence interval of 5 runs are shown. Bold face indicates the best result of each column and underlined is the second-best.
Improvement values are the improved ratio made by CausalGNN when compared with the second-best method.

Globe US-State US-County

MAE(↓) 7 14 21 28 7 14 21 28 7 14 21 28
SIR 4777±819 4880±615 5090±1125 5182±282 677±31 738±58 831±51 854±60 38.8±3.3 44.2±2.7 51.3±2.8 58.5±2.0
PatchSEIR 4419±500 4562±601 4737±349 5167±298 633±78 687±78 757±37 876±77 73.5±5.4 84.4±6.7 100.8±14.6 110.6±6.4
AR 2298±10 3024±7 3619±17 4258±246 377±1 580±3 683±11 758±28 24.8±0.1 33.6±0.3 34.2±0.3 35.6±0.4
ARMA 2254±13 2987±14 3596±23 4239±60 379±3 583±3 686±9 750±17 23.8±0.1 27.0±0.1 33.0±3.8 35.9±0.7
RNN 2395±44 2871±28 3328±27 3596±178 369±13 525±38 660±191 745±181 21.5±1.0 25.0±2.4 35.9±5.0 36.1±3.7
GRU 2189±48 2916±30 3379±37 3620±130 385±27 504±80 660±100 833±174 31.6±4.1 30.1±11.5 35.1±8.8 38.1±11.1
LSTM 1911±16 2585±11 3050±21 3598±140 344±9 421±24 552±161 748±134 23.4±1.0 23.7±0.3 33.0±4.7 37.6±1.3
DCRNN 2287±189 2892±137 3369±71 3804±177 393±20 470±26 657±172 702±165 22.4±1.3 25.3±1.0 31.2±6.7 36.3±6.4
CNNRNN-Res 4143±649 4526±572 4467±437 4479±390 642±31 658±41 732±94 856±148 29.8±1.3 31.0±1.1 33.4±1.1 36.0±2.8
LSTNet 2693±91 3535±125 3909±209 4285±155 443±19 597±34 744±73 815±53 24.5±0.7 28.0±1.7 31.5±1.0 33.2±1.6
STGCN 4750±796 4325±357 4669±202 4494±162 580±19 630±19 699±95 793±60 23.7±1.1 26.5±2.7 30.9±2.7 32.7±5.4
Cola-GNN 2314±231 3012±682 3225±263 3755±175 384±30 497±19 613±124 810±343 22.5±1.4 37.7±19.1 34.5±7.5 37.5±9.3
STAN 1851±172 2628±144 3163±138 3574±142 350±16 428±27 512±80 622±122 22.2±0.7 25.3±1.9 28.5±1.7 31.2±4.6
CausalGNN 1911±192 2502±144 3041±211 3310±58 339±13 416±16 498±68 640±51 21.3±0.4 24.1±0.1 26.8±0.7 29.0±0.7

MAPE(↓) 7 14 21 28 7 14 21 28 7 14 21 28

SIR 577±46 335±61 285±10 298±19 141±27 147±34 139±26 146±31 233.7±9.3 260.9±11.5 217.8±9.3 234.0±2.3
PatchSEIR 342±26 268±17 225±13 228±21 152±26 143±24 153±31 180±23 472.9±15.0 479.4±18.2 546.3±10.0 642.1±31.5
AR 108±0.3 109±0.7 110±0.7 130±13.1 93±1.0 114±1.7 150±8.4 178±18.6 79.7±0.1 79.4±0.9 81.8±0.9 84.7±0.9
ARMA 109±0.3 110±2.8 110±1.3 127±9.7 91±2.4 111±2.0 146±12.0 175±25.5 75.6±0.1 89.4±0.6 92.2±13.4 86.8±0.7
RNN 131±13 98±10 108±13 112±3 86±9 130±34 158±61 192±85 62.9±13.4 87.0±6.3 98.2±9.8 137.2±31.9
GRU 124±10 115±13 99±13 113±11 95±14 98±40 118±28 210±97 64.3±4.6 79.9±12.0 118.6±20.0 134.3±42.0
LSTM 126±4 104±1 95±4 119±16 84±3 89±7 122±48 182±54 62.5±6.0 62.1±3.7 108.2±27.2 134.1±33.3
DCRNN 135±14 120±10 122±7 132±10 95±3 107±3 132±37 137±38 63.5±6.1 71.0±4.6 85.4±6.8 96.1±25.8
CNNRNN-Res 230±41 218±20 206±48 204±20 108±11 136±26 150±34 167±11 90.8±12.2 91.9±8.4 97.3±13.8 103.7±19.2
LSTNet 131±4 114±17 129±14 147±19 86±3 110±9 137±11 171±11 72.7±3.0 81.3±8.3 86.5±4.8 107.9±9.7
STGCN 210±13 173±9 168±24 163±16 129±11 146±21 155±37 180±31 62.9±4.4 71.4±6.3 83.8±10.1 85.3±12.1
Cola-GNN 125±31 119±53 96±10 100±11 95±16 119±27 122±14 218±144 56.5±5.7 101.1±10.4 110.2±12.7 123.4±22.5
STAN 126±5 96±7 92±10 109±11 86±1 96±1 108±1 109±3 75.4±1.9 82.8±0.6 95.4±1.0 104.9±2.4
CausalGNN 122±4 100±6 90±9 97±17 81±4 87±4 105±11 140±10 62.0±3.7 64.7±1.0 77.3±4.4 79.0±2.8

ical context recurrently for future forecasting. Compared
with GNN-based models, Cola-GNN performs the worst on
the US-County dataset. A possible reason is that its model
size increases linearly with the squared number of regions
(N2) leading to overfitting to the dataset of 1351 regions.

SIR and PatchSEIR perform worse than data-driven meth-
ods, especially for long-term forecasting. PatchSEIR per-
forms worse than SIR at county level. As we mentioned in
the introduction section, SIR does not consider the spatial
connectivity thus fail to capture spatial disease transmission
dynamics. PatchSEIR leverages a gravity model-generated
network but may not represent real world mobility activi-
ties. Further, calibrating it is prone to overfitting on the US-
County dataset due to the large number of counties. In our
framework, the patches are connected via a learned GNN
that allows the spatial and temporal disease dynamics to ex-
change information in a latent space. The results demon-
strate the practical value of our design.

Compared with GNN-based models including STGCN,
Cola-GNN, STAN, and CausalGNN, the vanilla RNN, GRU,
LSTM models perform well in horizon=7,14. However, as
the horizon increases their advantages have diminished. This
indicates the importance of capturing spatial disease trans-
mission patterns in the input data for long term forecasting.
In most cases, the classic statistical methods (AR, ARMA)
show a poorer performance than the classic RNNs (RNN,
GRU, LSTM). This implies the importance of modeling

non-linear patterns for achieving good forecasting perfor-
mance.

Figure 2 shows the model performance of MAE and
MAPE computed across all regions at the Global level at var-
ious forecast days. We observe that the model performance
varies across the days but our model performs the best in
most of the days. We also observe that the MAE values in-
crease by days. The trend in MAE values coincides with the
trend in the number of global daily new confirmed cases,
which increases day by day from March 21, 2021, to April
23, 2021. Similar observations are obtained at US-State and
US-County levels. However, the MAPE results show a flat
trend with interval spikes across days. The spikes of MAPE
are caused by the noise in the testing datasets (variability
in reporting across day of a week). These observations in-
dicate that all models are implemented in a fair manner and
perform stably across days. We obtain similar observations
from performance at the US-state and US-county levels,
which are presented at the Appendix.

Ablation Study To explore the effect of the causal module
and graph structure in our model, we conduct an ablation
analysis on the three datasets.
• CausalGNN w/o csl: Remove the SIRD causal encoder

and decoder layers from the proposed model, and remove
the second term from the loss function in Equation 9. We
call the removed components as CSL.

• CausalGNN w/o grf: Remove the AGCN layers from the



model architecture. This means remove the graph struc-
ture called GRF.

• CausalGNN w/o att: Replace the attention matrix with
geographical adjacency matrix, which means remove the
attention mechanism called ATT.
We present the comparisons of forecasting performance

in terms of MAE for the above described model configura-
tions in Figure 3. Each comparison group (of the same met-
ric, dataset and horizon) involves four models: CausalGNN,
CausalGNN w/o csl, CausalGNN w/o grf, and CausalGNN
w/o att. Within a group, a model with a larger MAE value
than CausalGNN indicates a more important role of the
missing component in that model. The forecasting perfor-
mance in terms of MAPE shows similar observations, thus
is shown in Appendix due to the page limit.

Major observations and discussion: CausalGNN always
performs the best among the four models on different
datasets and horizons. This implies that all three com-
ponents play important roles in improving our model
performance. Specifically, in short-term forecasting (hori-
zon=7,14), CausalGNN w/o att performs the worst. It in-
dicates that an adaptive adjacency matrix is crucial in cap-
turing near future dynamics. In long-term forecasting (hori-
zon=21,28), CausalGNN w/o grf performs the worst on
three datasets. This indicates that GRF plays the most impor-
tant role in improving long-term forecasting performance.
It complies with the fact that incorporating cross-spatial
signals is crucial for a good epidemic forecasting model.
Also, GRF’s importance increases with increasing spatial
resolution which is intuitive as the spatial interdependence
is higher at state and county level. The results also show
that adding the CSL to the framework can lead to a perfor-
mance improvement. This demonstrates the effectiveness of
the CSL in improving epidemic forecasting performance.

Epidemiological Context In Figure 4, we present exam-
ples of the causal module impact by comparing 7 days ahead
forecasts of 2021-04-18 by CausalGNN (blue dots) and
CausalGNN w/o csl (red crosses) in Poland, Massachusetts,
and Carroll County. Both solid lines and dots are smoothed
and the shaded area is the input window. We can observe
that 1) CausalGNN makes better forecasts than CausalGNN
w/o csl (i.e., the blue dots are closer to the black curves than
the red crosses on the forecasting day). This means that the
causal module proposed in our model can help in improving
the model performance; 2) the causal module in CausalGNN
can generate meaningful curves (orange curves) compared
with the ground truth curves (black curves). This indicates
that CausalGNN can reveal mechanistic causal process by
producing meaningful causal parameters which can provide
meaningful epidemiological context for GNN learning. Lim-
itations are discussed in Appendix.

Model Complexity The number of parameters of our
model is agnostic to the number of regions N , as well as
RNN, GRU, and LSTM models. The parameter sizes of AR,
ARMA, and LSTNet increase linearly with N while those
of CNNRNN-Res and Cola-GNN increase linearly with N2.
The parameter sizes of SIR and PatchSEIR are linearly in-
creasing with N ×T . We compare the model parameter size

(a) Poland (b) Massachusetts (c) Carroll County

Figure 4: Examples of causal module impact.

Table 3: Model parameter size comparison on the US-State,
Globe, and US-county datasets. κ denotes the real parame-
ter size on US-State level. We show real parameter size for
US-State level and relative values for US-County and Global
level.

Methods US-State Globe (κ) US-County (κ)

SIR 16.6K 1.79 2.60
PatchSEIR 16.6K 1.79 2.60
AR 1.5K 1.79 25.98
ARMA 2.9K 1.79 25.98
RNN 0.5K 1.00 1.00
GRU 1.4K 1.00 1.00
LSTM 1.9K 1.00 1.00
DCRNN 21 1.00 1.00
CNNRNNRes 9.7K 2.04 201.98
LSTNet 13.3K 1.61 20.48
STGCN 14.6K 1.01 1.35
ColaGNN 5.7K 2.05 323.51
STAN 8K 0.96 0.96
CausalGNN 1.5K 0.97 0.97

of all methods in Table 3. The results show that compared
with the other GNN-based models, CausalGNN keeps a rela-
tively small parameter size even when the number of regions
increases. This demonstrates that our method can achieve ro-
bust performance across different datasets.

Conclusion
This paper introduces CausalGNN which is a GNN-based
model combining with causal computations for spatiotem-
poral epidemic forecasting. CausalGNN is well-designed
by keeping a small number of parameters and consider-
ing epidemiological context via a mutually learning mech-
anism, leading to better spatiotemporal forecasting perfor-
mance compared to baselines. Future work may include: 1)
multi-task learning, such as confirmed and death counts; 2)
exploring counterfactual forecasting via the causal module;
3) conducting a deeper analysis on the learned model for ex-
plainability.
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